ArticleOriginal scientific text

Title

Analytic hypoellipticity for sums of squares of vector fields

Authors 1

Affiliations

  1. Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

Abstract

We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.

Keywords

analytic hypoellipticity, sum of squares of vector fields, eigenvalue, bracket condition, characteristic set, symplectic, torus

Bibliography

  1. [BG] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483-486.
  2. [BM] D. R. Bell and S. A. Mohammed, An extension of Hörmander's theorem for infinitely degenerate second-order operators, Duke Math. J. 78 (1995), 453-475.
  3. [BT] L. Boutet de Monvel and F. Treves, On a class of pseudo-differential operators with double characteristics, Invent. Math. 24 (1974), 1-34.
  4. [BTa1] A. Bove and D. S. Tartakoff, Optimal non-isotropic Gevrey exponents for sums of squares of vector fields, Comm. Partial Differential Equations 22 (1997), 1263-1282.
  5. [BTa2] A. Bove and D. S. Tartakoff, On a conjecture of Treves: Analytic hypoellipticity and Poisson strata, preprint, 1997.
  6. [C] S. C. Chen, Global analytic hypoellipticity of the ∂̅-Neumann problem on circular domains, Invent. Math. 92 (1988), 173-185.
  7. [Ch1] M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, in: Contemp. Math. 137, Amer. Math. Soc., 1992, 155-167.
  8. [Ch2] M. Christ, A necessary condition for analytic hypoellipticity, Math. Res. Lett. 1 (1994), 241-248.
  9. [Ch3] M. Christ, Global analytic hypoellipticity in the presence of symmetry, ibid., 559-563.
  10. [Ch4] M. Christ, A progress report on analytic hypoellipticity, in: Geometric Complex Analysis, J. Noguchi (ed.), World Sci., 1996, 123-146.
  11. [Ch5] M. Christ, Intermediate optimal Gevrey exponents occur, Comm. Partial Differential Equations 22 (1997), 359-379.
  12. [CH1] P. D. Cordaro and A. A. Himonas, Global analytic hypoellipticity for a class of degenerate elliptic operators on the torus, Math. Res. Lett. 1 (1994), 501-510.
  13. [CH2] P. D. Cordaro and A. A. Himonas, Global analytic hypoellipticity for sums of squares of vector fields, Trans. Amer. Math. Soc., to appear.
  14. [D] M. Derridj, Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 99-148.
  15. [DT] M. Derridj and D. S. Tartakoff, Global analyticity for b on three dimensional CR manifolds, Comm. Partial Differential Equations 18 (1993), 1847-1868.
  16. [DZ] M. Derridj et C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures Appl. 52 (1973), 65-80.
  17. [F] V. S. Fediĭ, Estimates in Hs norms and hypoellipticity, Dokl. Akad. Nauk SSSR 193 (1970), 301-303 (in Russian).
  18. [G] A. Gilioli, A class of second-order evolution equations with double characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 187-229.
  19. [GT] A. Gilioli and F. Treves, An example in the solvability theory of linear PDE's, Amer. J. Math. 96 (1974), 367-385.
  20. [GR] A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. of Math. 118 (1983), 443-460.
  21. [GS] A. Grigis et J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35-51.
  22. [GW] S. J. Greenfield and N. R. Wallach, Global hypoelliptic and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114.
  23. [Gr] V. V. Grushin, On a class of hypoelliptic operators, Mat. Sb. 83 (1970), 456-473 (in Russian).
  24. [HH1] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511.
  25. [HH2] N. Hanges and A. A. Himonas, Analytic hypoellipticity for generalized Baouendi Goulaouic operators, J. Funct. Anal. 125 (1994), 309-325.
  26. [HH3] N. Hanges and A. A. Himonas, Singular solutions for a class of Grusin type operators, Proc. Amer. Math. Soc. 124 (1996), 1549-1557.
  27. [HH4] N. Hanges and A. A. Himonas, Non-analytic hypoellipticity in the presence of symplecticity, ibid. 126 (1998), 405-409.
  28. [He] B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations 44 (1982), 460-481.
  29. [Ho] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
  30. [K] J. J. Kohn, Pseudo-differential operators and hypoellipticity, in: Proc. Sympos. Pure Math. 23, Amer. Math. Soc., 1973, 61-70.
  31. [Ko] G. Komatsu, Global analytic hypoellipticity of the ∂̅-Neumann problem, Tôhoku Math. J. 28 (1976), 145-156.
  32. [KS] S. Kusuoka and D. Strook, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 1-76.
  33. [Kw] K. H. Kwon, Concatenations applied to analytic hypoellipticity of operators with double characteristics, Trans. Amer. Math. Soc., 283 (1984), 753-763.
  34. [M] T. Matsuzawa, Sur les équations u+tαu×=f(α0), Nagoya Math. J. 42 (1971), 43-55.
  35. [Me] A. Menikoff, Some examples of hypoelliptic partial differential equations, Math. Ann. 221 (1976), 167-181.
  36. [Met1] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations 1 (1981), 1-90.
  37. [Met2] G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), 823-860.
  38. [OR1] O. A. Oleĭnik and E. V. Radkevich, On the analyticity of solutions of linear differential equations and systems, Dokl. Akad. Nauk SSSR 207 (1972), 1614-1618 (in Russian).
  39. [OR2] O. A. Oleĭnik and E. V. Radkevich, Second Order Equations with Nonnegative Characteristic Form, Amer. Math. Soc. and Plenum Press, 1973.
  40. [PR] Pham The Lai et D. Robert, Sur un problème aux valeurs propres non linéaire, Israel J. Math. 36 (1980), 169-186.
  41. [RS] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247-320.
  42. [S] J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J. 12 (1983), 392-433.
  43. [St] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216.
  44. [Ta1] D. S. Tartakoff, On the local real analyticity of solutions to b and the ∂̅-Neumann problem, Acta Math. 145 (1980), 117-204.
  45. [Ta2] D. S. Tartakoff, On the global real analyticity of solutions to b on compact manifolds, Comm. Partial Differential Equations 1 (1976), 283-311.
  46. [Ta3] D. S. Tartakoff, Global (and local) analyticity for second order orerators constructed from rigid vector fields on products of tori, Trans. Amer. Math. Soc. 348 (1996), 2577-2583.
  47. [Tr1] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂̅-Neumann problem, Comm. Partial Differential Equations 3 (1978), 475-642.
  48. [Tr2] F. Treves, Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 26 (1973), 201-250.
  49. [Tr3] F. Treves, Symplectic geometry and analytic hypo-ellipticity, preprint, 1996.
Pages:
117-129
Main language of publication
English
Received
1998-01-05
Accepted
1998-08-28
Published
1998
Exact and natural sciences