ArticleOriginal scientific text

Title

On certain subclasses of multivalently meromorphic close-to-convex maps

Authors 1

Affiliations

  1. M 73/2, 31st Cross Street, Besant Nagar, Madras 600 090, India

Abstract

Let Mₚ denote the class of functions f of the form f(z)=1zp+k=0azk, p a positive integer, in the unit disk E = {|z| < 1}, f being regular in 0 < |z| < 1. Let Ln,p(α)={f:fM,Re{-(zp+1p)(Df)}>α}, α < 1, where Df=(zn+pf(z))(n)zpn!. Results on Ln,p(α) are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.

Keywords

meromorphic multivalently close-to-convex, differential subordination, convolution

Bibliography

  1. H. Al-Amiri and P. T. Mocanu, On certain subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. Roumanie 38 (86) (1994), 3-15.
  2. A. E. Livingston, Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167-177.
  3. S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
  4. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 167-171.
  5. S. S. Miller and P. T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai Math. 34 (1989), 3-33.
  6. C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  7. S. Ruscheweyh, Eine Invarianzeigenschaft der Basilevič-Funktionen, Math. Z. 134 (1973), 215-219.
Pages:
251-263
Main language of publication
English
Received
1997-10-09
Published
1998
Exact and natural sciences