ArticleOriginal scientific text

Title

The intersection convolution of relations and the Hahn-Banach type theorems

Authors 1

Affiliations

  1. Institute of Mathematics and Informatics, Lajos Kossuth University, H-4010 Debrecen, Pf. 12, Hungary

Abstract

By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an extension to a total linear selection.

Keywords

intersection convolution, additive and homogeneous relations, linear selections, binary intersection property, Hahn-Banach theorems

Bibliography

  1. J. Abreu and A. Etchebery, Hahn-Banach and Banach-Steinhaus theorems for convex processes, Period. Math. Hungar. 20 (1989), 289-297.
  2. R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.
  3. G. Buskes, The Hahn-Banach Theorem surveyed, Dissertationes Math. 327 (1993).
  4. J. Dieudonné, History of Functional Analysis, North-Holland Math. Stud. 49, North-Holland, Amsterdam, 1981.
  5. B. Fuchssteiner und J. Horváth, Die Bedeutung der Schnitteigenschaften beim Hahn-Banachschen Satz, Jahrbuch Überblicke Math. (BI, Mannheim) 1979, 107-121.
  6. B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981.
  7. Z. Gajda, A. Smajdor and W. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252.
  8. G. Godini, Set-valued Cauchy functional equation, Rev. Roumaine Math. Pures Appl. 20 (1975), 1113-1121.
  9. D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108.
  10. M. Hasumi, The extension property of complex Banach spaces, Tôhoku Math. J. 10 (1958), 135-142.
  11. L. Holá and P. Maličký, Continuous linear selectors of linear relations, Acta Math. Univ. Comenian. 48-49 (1986), 153-157.
  12. J. Horváth, Some selected results of professor Baltasar Rodrí guez-Salinas, Rev. Mat. Univ. Complut. Madrid 9 (1996), 23-72.
  13. O. Hustad, A note on complex ₁ spaces, Israel J. Math. 16 (1973), 117-119.
  14. A. W. Ingleton, The Hahn-Banach theorem for non-Archimedean-valued fields, Proc. Cambridge Philos. Soc. 48 (1952), 41-45.
  15. A. D. Ioffe, A new proof of the equivalence of the Hahn-Banach extension and the least upper bound properties, Proc. Amer. Math. Soc. 82 (1981), 385-389.
  16. J. L. Kelley, Banach spaces with the intersection property, Trans. Amer. Math. Soc. 72 (1952), 323-326.
  17. J. L. Kelley, General Topology, Van Nostrand Reinhold, New York, 1955.
  18. S. Mac Lane, Homology, Springer, Berlin, 1963.
  19. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46.
  20. K. Nikodem, Additive selections of additive set-valued functions, Zb. Rad. Prirod.-Mat. Fak. Univ. u Novom Sadu Ser. Mat. 18 (1988), 143-148.
  21. Zs. Páles, Linear selections for set-valued functions and extension of bilinear forms, Arch. Math. (Basel) 62 (1994), 427-432.
  22. B. Rodríguez-Salinas and L. Bou, A Hahn-Banach theorem for arbitrary vector spaces, Boll. Un. Mat. Ital. 10 (1974), 390-393.
  23. W. Smajdor, Subadditive and subquadratic set-valued functions, Prace Nauk. Uniw. Śląsk. Katowic. 889 (1987), 73 pp.
  24. W. Smajdor and J. Szczawińska, A theorem of the Hahn-Banach type, Demonstratio Math. 28 (1995), 155-160.
  25. T. Strömberg, The operation of infimal convolution, Dissertationes Math. 352 (1996).
  26. Á. Száz, Pointwise limits of nets of multilinear maps, Acta Sci. Math. (Szeged) 55 (1991), 103-117.
  27. Á. Száz, Foundations of Linear Analysis, Inst. Mat. Inf., Lajos Kossuth University Debrecen 1996, 200 pp. (Unfinished lecture notes in Hungarian).
  28. Á. Száz and G. Száz, Additive relations, Publ. Math. Debrecen 20 (1973), 259-272.
  29. Á. Száz and G. Száz, Linear relations, Publ. Math. Debrecen 27 (1980), 219-227.
  30. J. Zowe, Sandwich theorems for convex operators with values in an ordered vector space, J. Math. Anal. Appl. 66 (1978), 282-396.
Pages:
235-249
Main language of publication
English
Received
1997-07-17
Accepted
1998-03-12
Published
1998
Exact and natural sciences