ArticleOriginal scientific text
Title
A note on convergence of semigroups
Authors 1
Affiliations
- Chair of Mathematics, Department of Electrical Engineering, Lublin Technical University, Nadbystrzycka 38a, 20-618 Lublin, Poland
Abstract
Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.
Keywords
semigroup, approximation, differentiable semigroup, resolvent, asymptotic behaviour, mean ergodic theorems
Bibliography
- N. H. Abdelazis, A note on convergence of linear semigroups of class (1.A), Hokkaido Math. J. 18 (1989), 513-521.
- N. H. Abdelazis, On approximation by discrete semigroups, J. Approx. Theory 73 (1993), 253-269.
- N. H. Abdelazis and P. R. Chernoff, Continuous and discrete semigroup approximations with applications to the Cauchy problems, J. Operator Theory 32 (1994), 331-352.
- W. Arendt, Vector-valued Laplace transforms and Cauchy problem, Israel J. Math. 59 (1987), 321-352.
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852.
- C. J. K. Batty, Some Tauberian theorems related to operator theory, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 21-34.
- C. J. K. Batty, Asymptotic behaviour of semigroups, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52.
- B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari 1994, 27-60.
- A. Bobrowski, Degenerate convergence of semigroups, Semigroup Forum 49 (1994), 303-327.
- A. Bobrowski, Examples of a pointwise convergence of semigroups, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 15-33.
- A. Bobrowski, Integrated semigroups and the Trotter-Kato theorem, Bull. Polish Acad. Sci. Math. 41 (1994), 297-304.
- A. Bobrowski, On the generation of non-continuous semigroups, Semigroup Forum 54 (1997), 237-252.
- A. Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math. 124 (1997), 281-290.
- A. Bobrowski, On approximation of (1.A) semigroups by discrete semigroups, Bull. Polish Acad. Sci. Math. 46 (1998), 141-154.
- S. Busenberg and B. Wu, Convergence theorems for integrated semigroups, Differential Integral Equations 5 (1992), 509-520.
- J. T. Cannon, Convergence criteria for a sequence of semi-groups, Appl. Anal. 5 (1975), 23-31.
- P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205.
- P. C. Curtis and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, F. T. Birtel (ed.), Scott and Foresman, Chicago, 1966.
- G. Da Prato and E. Sinestrari, Differential operators with non-dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344.
- E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.
- B. D. Doytchinov, W. J. Hrusa and S. J. Watson, On perturbation of differentiable semigroups, Semigroup Forum 54 (1997), 100-111.
- N. Dunford, Spectral theory, I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217.
- S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986.
- A. Favini, J. A. Goldstein and S. Romanelli, Analytic semigroups on
and on generated by classes of second order differential operators, preprint, 1997. - J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monographs, 1985.
- J. A. Goldstein, C. Radin and R. E. Showalter, Convergence rates of ergodic limits for semigroups and cosine operator functions, Semigroup Forum 16 (1978), 89-95.
- E. Görlich and D. Pontzen, Approximation of operator semigroups of Oharu's class
, Tôhoku Math. J. (2) 34 (1982), 539-552. - S. L. Gulik, T. S. Liu and A. C. M. van Rooij, Group algebra modules II, Canad. J. Math. 19 (1967), 151-173.
- B. Hennig and F. Neubrander, On representations, inversions and approximations of Laplace transform in Banach spaces, Appl. Anal. 49 (1993), 151-170.
- E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964) 147-155.
- E. Hille, On the differentiability of semigroups of operators, Acta Sci. Math. (Szeged) 12 (1950), 19-24.
- E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, rev. ed., Amer. Math. Soc. Collloq. Publ. 31, Providence, R.I., 1957.
- K. Ito and H. P. Mc Kean, Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
- T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
- J. Kisyński, A proof of the Trotter-Kato theorem on approximation of semigroups, Colloq. Math. 18 (1967), 181-184.
- J. Kisyński, Semigroups of operators and some of their applications to partial differential equations, in: Control Theory and Topics in Functional Analysis, Vol. 3, IAEA, Vienna, 1978, 305-405.
- T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal. 3 (1969), 354-375.
- T. G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 23-32.
- A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159.
- C. Lizama, On the convergence and approximation of integrated semigroups, J. Math. Anal. Appl. 181, (1994), 89-103.
- G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I 310 (1990), 557-582.
- G. Lumer, A (very) direct approach to locally Lipschitz continuous integrated semigroups and some related new results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDEs, 1990-1991, Louisiana State Univ., Baton Rouge, 1991, 88-107.
- G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Ann. Univ. Sarav. Ser. Math. 5 (1994), no. 1, 1-102.
- Yu. I. Lyubich and V u Quôc Phóng, Asymptotic stability of linear differential equations on Banach spaces, Studia Math. 88 (1988), 37-42.
- R. Nagel, One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986.
- J. Neveu, Théorie des semi-groupes de Markov, Univ. Calif. Publ. Statist. 2 (1958), 319-394.
- A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1960), 1131-1141.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- R. S. Phillips, An inversion formula for the Laplace transform and semigroups of linear operators, Ann. of Math. 59 (1954), 325-356.
- M. Renardy, On the stability of differentiability of semigroups, Semigroup Forum 51 (1995), 343-346.
- G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian).
- M. Slemrod, Asymptotic behaviour of C₀ semi-groups as determined by the spectrum of the generator, Indiana Univ. Math. J. 25 (1976), 783-792.
- T. Takahashi and S. Oharu, Approximation of operator semigroups in a Banach space, Tôhoku Math. J. 24 (1972), 505-528.
- K. Yosida, On the differentiability of semigroups of linear operators, Proc. Japan Acad. 34 (1958), 337-340.
- K. Yosida, Functional Analysis, Springer, Berlin, 1968.