ArticleOriginal scientific text

Title

On the method of lines for a non-linear heat equation with functional dependence

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.

Keywords

method of lines, stability, consistency

Bibliography

  1. P. Besala, Finite difference approximation to the Cauchy problem for non-linear parabolic differential equations, Ann. Polon. Math. 46 (1985), 19-26.
  2. S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian).
  3. L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458.
  4. Z. Kamont, On the Chaplygin method for partial differential-functional equations of the first order, Ann. Polon. Math. 38 (1980), 27-46.
  5. Z. Kamont and H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. 16 (1996), 265-287.
  6. Z. Kamont and H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence, Georgian Math. J. (1997).
  7. Z. Kamont and S. Zacharek, The line method for parabolic differential-functional equations with initial boundary conditions of the Dirichlet type, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 249-262.
  8. M. Krzyżański, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
  9. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Adv. Publ. Program, Pitman, Boston, 1985.
  10. O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian); English transl.: Transl. Math. Monographs 23, Amer. Math. Soc., Providence, R.I., 1968.
  11. H. Leszczyński, Convergence of one-step difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of Dirichlet type, Comment. Math. Prace Mat. 30 (1991), 357-375.
  12. H. Leszczyński, A new existence result for a non-linear heat equation with functional dependence, Comment. Math. Prace Mat. 37 (1997), 155-181.
  13. H. Leszczyński, General finite difference approximation to the Cauchy problem for non-linear parabolic differential-functional equations, Ann. Polon. Math. 53 (1991), 15-28.
  14. H. Leszczyński, Convergence results for unbounded solutions of first order non-linear differential-functional equations, Ann. Polon. Math. 64 (1996), 1-16.
  15. H. Leszczyński, Discrete approximations to the Cauchy problem for hyperbolic differential-functional systems in the Schauder canonic form, Zh. Vychisl. Mat. Mat. Fiz. 34 (1994), 185-200 (in Russian); English transl.: Comput. Math. Math. Phys. 34 (1994), 151-164.
  16. M. Malec et A. Schiaffino, Méthode aux différences finies pour une équation non linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. B (7) 1 (1987), 99-109.
  17. L. F. Shampine, ODE solvers and the method of lines, Numer. Methods Partial Differential Equations 10 (1994), 739-755.
  18. A. Voigt, Line method approximation to the Cauchy problem for nonlinear differential equations, Numer. Math. 23 (1974), 23-36.
  19. A. Voigt, The method of lines for nonlinear parabolic differential equations with mixed derivatives, Numer. Math. 32 (1979), 197-207.
Pages:
61-74
Main language of publication
English
Received
1997-04-14
Accepted
1997-11-17
Published
1998
Exact and natural sciences