Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 68 | 3 | 281-300

Tytuł artykułu

On a transmission problem in elasticity

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The transmission problem for the reduced Navier equation of classical elasticity, for an infinitely stratified scatterer, is studied. The existence and uniqueness of solutions is proved. Moreover, an integral representation of the solution is constructed, for both the near and the far field.

Rocznik

Tom

68

Numer

3

Strony

281-300

Opis fizyczny

Daty

wydano
1998
otrzymano
1997-08-29

Twórcy

  • Department of Mathematics, University of Athens, Panepistemiopolis, GR-157 84 Athens, Greece
  • Department of Mathematics, University of Athens, Panepistemiopolis, GR-157 84 Athens, Greece

Bibliografia

  • [1] C. Athanasiadis and I. G. Stratis, Low-frequency acoustic scattering by an infinitely stratified scatterer, Rend. Mat. Appl. 15 (1995), 133-152.
  • [2] C. Athanasiadis and I. G. Stratis, Parabolic and hyperbolic diffraction problems, Math. Japon. 43 (1996), 37-45.
  • [3] C. Athanasiadis and I. G. Stratis, On some elliptic transmission problems, Ann. Polon. Math. 63 (1996), 137-154.
  • [4] P. J. Barrat and W. D. Collins, The scattering cross-section of an obstacle in an elastic solid for plane harmonic waves, Proc. Cambridge Philos. Soc. 61 (1965), 969-981.
  • [5] G. Caviglia and A. Morro, Inhomogeneous Waves in Solids and Fluids, World Sci., London, 1992.
  • [6] G. Dassios and K. Kiriaki, The low-frequency theory of elastic wave scattering, Quart. Appl. Math. 42 (1984), 225-248.
  • [7] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Physical Origins and Classical Methods, Springer, Berlin, 1990.
  • [8] G. Fichera, Existence theorems in elasticity, in: Handbuch der Physik, Via/2, Springer, Berlin, 1972, 347-389.
  • [9] D. S. Jones, Low-frequency scattering in elasticity, Quart. J. Mech. Appl. Math. 34 (1981), 431-451.
  • [10] D. S. Jones, A uniqueness theorem in elastodynamics, Appl. Math. 37 (1984), 121-142.
  • [11] K. Kiriaki and D. Polyzos, The low-frequency scattering theory for a penetrable scatterer with an impenetrable core in an elastic medium, Internat. J. Engrg. Sci. 26 (1988), 1143-1160.
  • [12] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.
  • [13] V. D. Kupradze (ed.), Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979.
  • [14] D. Polyzos, Low-frequency elastic scattering theory for a multi-layered scatterer with dyadic incidence, submitted.
  • [15] P. C. Sabatier, On the scattering by discontinuous media, in: Inverse Problems in Partial Differential Equations, D. Colton, R. Ewing, W. Rundell (eds.), SIAM, Philadelphia, 1990, 85-100.
  • [16] L. T. Wheeler and E. Sternberg, Some theorems in classical elastodynamics, Arch. Rational Mech. Anal. 31 (1968), 51-90.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-apmv68z3p281bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.