ArticleOriginal scientific text
Title
Convexity of sublevel sets of plurisubharmonic extremal functions
Authors 1, 2, 3
Affiliations
- Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Laboratoire de Mathématiques E. Picard, Université Paul Sabatier - Toulouse, 3 118 route de Narbonne, F-31062 Toulouse Cedex, France
- Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland
Abstract
Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.
Keywords
plurisubharmonic, relative extremal function, convex, disc functional, envelope, Blaschke product
Bibliography
- A. Edigarian and E. A. Poletsky, Product property of the relative extremal function, preprint, 1997.
- M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, Report RH-15-96, Science Institute, University of Iceland, 1996.
- S. Momm, Boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75.
- S. Momm, An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996), 139-163.
- K. Noshiro, Cluster Sets, Ergeb. Math. Grenzgeb. 28, Springer, 1960.
- M. Papadimitrakis, On convexity of level curves of harmonic functions in the hyperbolic plane, Proc. Amer. Math. Soc. 114 (1992), 695-698.
- E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163-171.
- E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.
- J.-P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions, and the convexity of level sets, Michigan Math. J. 36 (1989), 95-111.