ArticleOriginal scientific text

Title

Convexity of sublevel sets of plurisubharmonic extremal functions

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
  2. Laboratoire de Mathématiques E. Picard, Université Paul Sabatier - Toulouse, 3 118 route de Narbonne, F-31062 Toulouse Cedex, France
  3. Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland

Abstract

Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function uE,X for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of uE,X are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.

Keywords

plurisubharmonic, relative extremal function, convex, disc functional, envelope, Blaschke product

Bibliography

  1. A. Edigarian and E. A. Poletsky, Product property of the relative extremal function, preprint, 1997.
  2. M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
  3. F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, Report RH-15-96, Science Institute, University of Iceland, 1996.
  4. S. Momm, Boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75.
  5. S. Momm, An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996), 139-163.
  6. K. Noshiro, Cluster Sets, Ergeb. Math. Grenzgeb. 28, Springer, 1960.
  7. M. Papadimitrakis, On convexity of level curves of harmonic functions in the hyperbolic plane, Proc. Amer. Math. Soc. 114 (1992), 695-698.
  8. E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163-171.
  9. E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.
  10. J.-P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions, and the convexity of level sets, Michigan Math. J. 36 (1989), 95-111.
Pages:
267-273
Main language of publication
English
Received
1997-05-15
Accepted
1997-09-22
Published
1998
Exact and natural sciences