The classical Mittag-Leffler theorem on meromorphic functions is extended to the case of functions and hyperfunctions belonging to the kernels of linear partial differential operators with constant coefficients.
Department of Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
[1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1983.
[2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992.
[3] M. Brelot, Eléments de la théorie classique du potentiel, 2-ème éd., Paris, 1961.
[4] S. Y. Chung, D. Kim and J. R. Lee, Generalized Bôcher's theorem, J. Math. Anal. Appl. 188 (1994), 341-345.
[5] S. J. Gardiner, Harmonic Approximation, London Math. Soc. Lecture Note Ser. 221, Cambridge Univ. Press, 1995.
[6] R. Harvey and J. C. Polking, A Laurent expansion for solutions to elliptic equations, Trans. Amer. Math. Soc. 180 (1973), 407-413.
[7] L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983.
[8] V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Nauka, Moscow, 1967 (in Russian).
[9] P. Schapira, Théorie des Hyperfonctions, Lecture Notes in Math. 126, Springer, 1970.
[10] N. N. Tarkhanov, Laurent expansions and local properties of solutions of elliptic systems, Sibirsk. Mat. Zh. 29 (6) (1988), 124-134 (in Russian).
[11] N. N. Tarkhanov, Laurent Series for Solutions of Elliptic Equations, Nauka, Novosibirsk, 1991 (in Russian).
[12] N. N. Tarkhanov, The Analysis of Solutions of Elliptic Equations, Kluwer, Dordrecht, 1997.
[13] M. Wachman, Generalized Laurent series for singular solutions of elliptic partial differential equations, Proc. Amer. Math. Soc. 15 (1964), 101-108.