ArticleOriginal scientific text
Title
A fixed point method in dynamic processes for a class of elastic-viscoplastic materials
Authors 1
Affiliations
- Department of Mathematics, University of Perpignan, 52, Avenue de Villeneuve, 66860 Perpignan Cedex, France
Abstract
Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.
Keywords
viscoplasticity, dynamic processes, Galerkin method, fixed point, internal state variable
Bibliography
- N. Cristescu and I. Suliciu, Viscoplasticity, Martius Nijhoff and Editura Tehnica, Bucarest, 1982.
- S. Djabi and M. Sofonea, A fixed point method in quasistatic rate-type viscoplasticty, Appl. Math. Comput. Sci., 1993.
- G. Duvaut et J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
- I. R. Ionescu, Dynamic processes for a class of elastic-viscoplastic materials, Stud. CBRC Mat., Bucureşti, 1992.
- I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Univ. Press, Oxford, 1993.