ArticleOriginal scientific text

Title

A fixed point method in dynamic processes for a class of elastic-viscoplastic materials

Authors 1

Affiliations

  1. Department of Mathematics, University of Perpignan, 52, Avenue de Villeneuve, 66860 Perpignan Cedex, France

Abstract

Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.

Keywords

viscoplasticity, dynamic processes, Galerkin method, fixed point, internal state variable

Bibliography

  1. N. Cristescu and I. Suliciu, Viscoplasticity, Martius Nijhoff and Editura Tehnica, Bucarest, 1982.
  2. S. Djabi and M. Sofonea, A fixed point method in quasistatic rate-type viscoplasticty, Appl. Math. Comput. Sci., 1993.
  3. G. Duvaut et J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
  4. I. R. Ionescu, Dynamic processes for a class of elastic-viscoplastic materials, Stud. CBRC Mat., Bucureşti, 1992.
  5. I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Univ. Press, Oxford, 1993.
Pages:
237-247
Main language of publication
English
Received
1997-03-24
Published
1998
Exact and natural sciences