ArticleOriginal scientific text
Title
Commutators of diffeomorphisms of a manifold with boundary
Authors 1
Affiliations
- Institute of Mathematics, Pedagogical University, Rejtana 16 A, 35-310 Rzeszów, Poland
Abstract
A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on -diffeomorphisms are included.
Keywords
Group of diffeomorphisms, simplicity, perfectness, manifold with boundary, fixed point theory
Bibliography
- A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227.
- D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173.
- D. B. A. Epstein, Commutators of
-diffeomorphisms, Comment. Math. Helv. 59 (1984), 111-122. - K. Fukui, Homologies of the group
and its subgroups, J. Math. Kyoto Univ. 20 (1980), 475-487. - M. R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier (Grenoble) 23 (2) (1973), 75-86.
- A. Masson, Sur la perfection du groupe des difféomorphismes d'une variété à bord infiniment tangents à l'identité sur le bord, C. R. Acad. Sci. Paris Sér. A 285 (1977), 837-839.
- J. N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. I 49 (1974), 512-528; II 50 (1975), 33-40; III 60 (1985), 122-124.
- J. Palis and S. Smale, Structural stability theorems, in: Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 223-231.
- T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect, Monatsh. Math. 120 (1995), 289-305.
- L. Schwartz, Analyse Mathématique, Hermann, Paris 1967.
- F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253-275.
- W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307.