ArticleOriginal scientific text

Title

On the nonlinear stabilization of the wave equation

Authors 1

Affiliations

  1. Institut de recherche mathématique avancée, Université Louis Pasteur et CNRS, 7, rue René Descartes, 67084 Strasbourg Cedex, France

Abstract

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

Keywords

wave equation, nonlinear damping, integral inequality

Bibliography

  1. J. B. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations 27 (1978), 224-265.
  2. F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. Henri Poincaré 11 (1994), 485-515.
  3. A. Guesmia, Stabilisation frontière non linéaire d'un système isotropique d'élasticité, submitted.
  4. V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, Masson-Wiley, Paris, 1994.
  5. V. Komornik, Decay estimates for the wave equation with internal damping, in: Proc. Conf. Control Theory, Vorau 1993, Internat. Ser. Numer Anal. 118, Birkhäuser, Basel, 1994, 253-266.
  6. V. Komornik, On the nonlinear boundary stabilization of the wave equation, Chinese Ann. Math. Ser. B 14 (1993), 153-164.
  7. V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim. 29 (1991), 197-208.
  8. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54.
  9. M. Nakao, On the decay of solutions of some nonlinear dissipative wave equations in higher dimensions, Math. Z. 193 (1986), 227-234.
  10. M. Nakao, Energy decay for the wave equation with a nonlinear weak dissipation, Differential Integral Equations 8 (1995), 681-688.
  11. E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), 446-477.
Pages:
191-198
Main language of publication
English
Received
1997-07-08
Published
1998
Exact and natural sciences