ArticleOriginal scientific text

Title

Estimations of the second coefficient of a univalent, bounded, symmetric and non-vanishing function by means of Loewner's parametric method

Authors 1

Affiliations

  1. Institute of Mathematics, Silesian Technical University, Ul. Kaszubska 23, 44-100 Gliwice, Poland

Abstract

Let (R)(b) denote the class of functions F(z) = b + A₁z + A₂z² + ...analyticandunivanttheunitdiskUwhichsatiytheconditions:F(U)U,0F(U),Im F^{(n)}(0) = 0.UsingLoewrsparametricmethodweobtalowerandupperboundsofA₀^{(R)}(b)andfunctionsforwhichtheseboundsarerealized.The₀^{(R)}(b),roduced[6],isafthe_uofbounded,non-vanishgunivantfunctionstheunitdisk.Thislcloselyrelatedoshavebeenstudiedbyvariousauthors[1]-[4].Wementionpartica̲rthepaperofD.V.ProkhorovandJ.Szynal[5],whereasharpupperboundforthesecondcoefficient_u!$! is given.

Keywords

univalent function, Loewner differential equation

Bibliography

  1. P. Duren and G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195-216.
  2. C. Horowitz, Coefficients of nonvanishing functions in H, Israel J. Math. 30 (1978), 285-291.
  3. J. Hummel, S. Scheinberg and L. Zalcman, A coefficient problem for bounded nonvanishing functions, J. Anal. Math. 31 (1977), 169-190.
  4. J. Krzyż, Coefficient problem for bounded nonvanishing functions, Ann. Polon. Math. 70 (1968), 314.
  5. D. V. Prokhorov and J. Szynal, Coefficient estimates for bounded nonvanishing functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 223-230.
  6. J. Śladkowska, On univalent, bounded, non-vanishing and symmetric functions in the unit disk, Ann. Polon. Math. 64 (1996), 291-299.
  7. O. Tammi, Extremum Problems for Bounded Univalent Functions, Lecture Notes in Math. 646, Springer, 1978.
Pages:
119-123
Main language of publication
English
Received
1996-11-05
Accepted
1997-02-15
Published
1998
Exact and natural sciences