ArticleOriginal scientific text
Title
Estimations of the second coefficient of a univalent, bounded, symmetric and non-vanishing function by means of Loewner's parametric method
Authors 1
Affiliations
- Institute of Mathematics, Silesian Technical University, Ul. Kaszubska 23, 44-100 Gliwice, Poland
Abstract
Let denote the class of functions F(z) = b + A₁z + A₂z² + ... Im F^{(n)}(0) = 0 ₀^{(R)}(b) ₀^{(R)}(b) _u _u!$! is given.
Keywords
univalent function, Loewner differential equation
Bibliography
- P. Duren and G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195-216.
- C. Horowitz, Coefficients of nonvanishing functions in
, Israel J. Math. 30 (1978), 285-291. - J. Hummel, S. Scheinberg and L. Zalcman, A coefficient problem for bounded nonvanishing functions, J. Anal. Math. 31 (1977), 169-190.
- J. Krzyż, Coefficient problem for bounded nonvanishing functions, Ann. Polon. Math. 70 (1968), 314.
- D. V. Prokhorov and J. Szynal, Coefficient estimates for bounded nonvanishing functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 223-230.
- J. Śladkowska, On univalent, bounded, non-vanishing and symmetric functions in the unit disk, Ann. Polon. Math. 64 (1996), 291-299.
- O. Tammi, Extremum Problems for Bounded Univalent Functions, Lecture Notes in Math. 646, Springer, 1978.