ArticleOriginal scientific text

Title

On some radius results for normalized analytic functions

Authors 1, 2

Affiliations

  1. Department of Mathematics, Yeungnam University, 214-1, Daedong, Gyongsan 712-749, Korea
  2. Department of Mathematics, Andong National University, Andong 760-749, Korea

Abstract

We investigate some radius results for various geometric properties concerning some subclasses of the class of univalent functions.

Keywords

Hausdorff-Young theorem, univalent function, Hardy space, Dirichlet space

Bibliography

  1. P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  2. G. M. Goluzin, On the theory of univalent conformal mappings, Mat. Sb. 42 (1935), 169-190 (in Russian).
  3. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
  4. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370.
  5. Y. C. Kim, K. S. Lee, and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1-12.
  6. F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 117-122.
  7. F. Rønning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 123-134.
  8. F. Rønning, Some radius results for univalent functions, J. Math. Anal. Appl. 194 (1995), 319-327.
  9. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
  10. H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Sci., Singapore, 1992.
  11. S. Yamashita, Starlikeness and convexity from integral means of the derivative, Proc. Amer. Math. Soc. 103 (1988), 1094-1098.
Pages:
51-60
Main language of publication
English
Received
1996-07-26
Accepted
1997-03-17
Published
1998
Exact and natural sciences