ArticleOriginal scientific text
Title
On some radius results for normalized analytic functions
Authors 1, 2
Affiliations
- Department of Mathematics, Yeungnam University, 214-1, Daedong, Gyongsan 712-749, Korea
- Department of Mathematics, Andong National University, Andong 760-749, Korea
Abstract
We investigate some radius results for various geometric properties concerning some subclasses of the class of univalent functions.
Keywords
Hausdorff-Young theorem, univalent function, Hardy space, Dirichlet space
Bibliography
- P. L. Duren, Theory of
Spaces, Academic Press, New York, 1970. - G. M. Goluzin, On the theory of univalent conformal mappings, Mat. Sb. 42 (1935), 169-190 (in Russian).
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
- A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370.
- Y. C. Kim, K. S. Lee, and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1-12.
- F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 117-122.
- F. Rønning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 123-134.
- F. Rønning, Some radius results for univalent functions, J. Math. Anal. Appl. 194 (1995), 319-327.
- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Sci., Singapore, 1992.
- S. Yamashita, Starlikeness and convexity from integral means of the derivative, Proc. Amer. Math. Soc. 103 (1988), 1094-1098.