PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 68 | 1 | 31-50
Tytuł artykułu

Randomly connected dynamical systems - asymptotic stability

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.
Kategorie tematyczne
Rocznik
Tom
68
Numer
1
Strony
31-50
Opis fizyczny
Daty
wydano
1998
otrzymano
1996-05-27
poprawiono
1997-07-08
Twórcy
  • Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Bibliografia
  • [1] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285.
  • [2] K. Horbacz, Dynamical systems with multiplicative perturbations: The strong convergence of measures, Ann. Polon. Math. 58 (1993), 85-93.
  • [3] W. Jarczyk and A. Lasota, Invariant measures for fractals and dynamical systems, to appear.
  • [4] A. Lasota, From fractals to stochastic differential equations, to appear.
  • [5] A. Lasota and M. C. Mackey, Noise and statistical periodicity, Physica D 28 (1987), 143-154.
  • [6] A. Lasota and M. C. Mackey, Why do cells divide?, to appear.
  • [7] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise - Stochastic Aspect of Dynamics, Springer, New York, 1994.
  • [8] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynamics 2 (1994), 41-77.
  • [9] T. Szarek, Iterated function systems depending on previous transformation, Univ. Iagell. Acta Math., to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv68z1p31bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.