ArticleOriginal scientific text

Title

Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice

Authors 1

Affiliations

  1. Institute of Mathematics, Silesian University, 40-007 Katowice, Poland

Abstract

Asymptotic convergence theorems for nonnegative operators on Banach lattices, on L, on C(X) and on Lp(1p<) are proved. The general results are applied to a class of integral operators on L¹.

Keywords

nonnegative operator, exponentially stationary operator, integral operator, lower function

Bibliography

  1. [A] H. Amann, Fixed point theorems and nonlinear eigenvalue problems, SIAM Rev. 18 (1976), 620-709.
  2. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publ., New York, 1958.
  3. [LM] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985.
  4. [LR] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159.
  5. [LY] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384.
  6. [LY1] A. Lasota and J. A. Yorke, When the long-time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221-240.
  7. [ŁR] K. Łoskot and R. Rudnicki, Relative entropy and stability of stochastic semigroups, Ann. Polon. Math. 53 (1991), 139-145.
  8. [N] R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, in: Fixed Point Theory, Proc. Conf. Sherbrooke, Lecture Notes Math. 886, Springer, 1980, 309-330.
  9. [R] R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Polish Acad. Sci. Math. 34 (1986), 181-187.
  10. [S] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, 1974.
  11. [Y] J. A. Yorke, A certain example of nonnegative operators on the space of all integrable functions on [0,3], unpublished.
  12. [ZKP] P. P. Zabreĭko, M. A. Krasnosel'skiĭ and Yu. V. Pokornyĭ, A certain class of positive linear operators, Funktsional. Anal. i Prilozhen. 5 (4) (1971), 9-17 (in Russian).
  13. [Z] A. Zalewska-Mitura, A generalization of the lower bound function theorem for Markov operators, Univ. Iagell. Acta Math. 1994 (31), 79-85.
Pages:
1-16
Main language of publication
English
Received
1994-11-14
Accepted
1995-07-12
Published
1998
Exact and natural sciences