ArticleOriginal scientific text
Title
Parabolic differential-functional inequalities in viscosity sense
Authors 1
Affiliations
- Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Abstract
We consider viscosity solutions for second order differential-functional equations of parabolic type. Initial value and mixed problems are studied. Comparison theorems for subsolutions, supersolutions and solutions are considered.
Keywords
viscosity solution, differential-functional equation
Bibliography
- S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian).
- S. Brzychczy, Existence of solutions for non-linear systems of differential-functional equations of parabolic type in an arbitrary domain, Ann. Polon. Math. 47 (1987), 309-317.
- M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
- M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
- V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969.
- P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.
- J. Szarski, Differential Inequalities, PWN, Warszawa, 1967.
- J. Szarski, Sur un système non linéaire d'inégalités différentielles paraboliques contenant des fonctionnelles, Colloq. Math. 16 (1967), 141-145.
- J. Szarski, Uniqueness of solutions of mixed problem for parabolic differential-functional equations, Ann. Polon. Math. 28 (1973), 52-65.
- K. Topolski, On the uniqueness of viscosity solutions for first order partial differential-functional equations, Ann. Polon. Math. 59 (1994), 65-75.