ArticleOriginal scientific text
Title
A set on which the local Łojasiewicz exponent is attained
Authors 1, 1
Affiliations
- Faculty of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Abstract
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set {z ∈ U: f₁(z)·...·fₘ(z) = 0}.
Keywords
holomorphic mapping, Łojasiewicz exponent
Bibliography
- [CK₁] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 139-146.
- [CK₂] J. Chądzyński and T. Krasiński, A set on which the Łojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191-197.
- [CK₃] J. Chądzyński and T. Krasiński, On the Łojasiewicz exponent for analytic curves, in: Singularities Symposium - Łojasiewicz 70, B. Jakubczyk, W. Pawłucki and J. Stasica (eds.), Banach Center Publ., to appear.
- [LT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974.
- [P] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281.