ArticleOriginal scientific text
Title
Hedgehogs of constant width and equichordal points
Authors 1
Affiliations
- 1, Rue Auguste Perret, 92500 Rueil-Malmaison, France
Abstract
We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.
Keywords
convex body, hypersurface, pedal, equichordal, hedgehog
Bibliography
- W. Blaschke, H. Rothe und R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917), 82.
- M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916), 99-103.
- P. J. Kelly, Curves with a kind of constant width, Amer. Math. Monthly 64 (1957), 333-336.
- V. Klee, Can a plane convex body have two equichordal points?, Amer. Math. Monthly 76 (1969), 54-55.
- V. Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (3) (1979), 131-145.
- R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons ( Enveloppes paramétrées par leur application de Gauss), in: Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253.
- Y. Martinez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss), Bull. Sci. Math., to appear.
- C. M. Petty and J. M. Crotty, Characterization of spherical neighborhoods, Canad. J. Math. 22 (1970), 431-435.
- R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
- E. Wirsing, Zur Analytizität von Doppelspeichkurven, Arch. Math. (Basel) 9 (1958), 300-307.