ArticleOriginal scientific text

Title

Hedgehogs of constant width and equichordal points

Authors 1

Affiliations

  1. 1, Rue Auguste Perret, 92500 Rueil-Malmaison, France

Abstract

We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.

Keywords

convex body, hypersurface, pedal, equichordal, hedgehog

Bibliography

  1. W. Blaschke, H. Rothe und R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917), 82.
  2. M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916), 99-103.
  3. P. J. Kelly, Curves with a kind of constant width, Amer. Math. Monthly 64 (1957), 333-336.
  4. V. Klee, Can a plane convex body have two equichordal points?, Amer. Math. Monthly 76 (1969), 54-55.
  5. V. Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (3) (1979), 131-145.
  6. R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons ( Enveloppes paramétrées par leur application de Gauss), in: Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253.
  7. Y. Martinez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss), Bull. Sci. Math., to appear.
  8. C. M. Petty and J. M. Crotty, Characterization of spherical neighborhoods, Canad. J. Math. 22 (1970), 431-435.
  9. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
  10. E. Wirsing, Zur Analytizität von Doppelspeichkurven, Arch. Math. (Basel) 9 (1958), 300-307.
Pages:
285-288
Main language of publication
English
Received
1996-07-08
Accepted
1997-03-05
Published
1997
Exact and natural sciences