ArticleOriginal scientific text
Title
Invariant Hodge forms and equivariant splittings of algebraic manifolds
Authors 1
Affiliations
- Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland
Abstract
Let T be a complex torus acting holomorphically on a compact algebraic manifold M and let be the homomorphism induced by π₁(M) = im ev_∗ × Δ ∫_{β×δ} Ω = 0 β ∈ im ev_∗!$! and δ ∈ Δ.
Keywords
holomorphic action, fibration, Hodge form, equivariant splitting, algebraic manifold
Bibliography
- E. Calabi, On Kähler manifolds with vanishing canonical class, in: Algebraic Geometry and Topology, Princeton Univ. Press, 1957, 78-89.
- J. B. Carrell, Holomorphically injective complex toral actions, in: Proc. Second Conference on Compact Transformation Groups, Part 2, Lecture Notes in Math. 299, Springer, 1972, 205-236.
- J. Matsushima, Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Differential Geom. 3 (1969), 477-480.
- D. Mumford, Abelian Varieties, Oxford Univ. Press, Oxford, 1970.
- M. Sadowski, Equivariant splittings associated with smooth toral actions, in: Algebraic Topology, Proc., Poznań 1989, Lecture Notes in Math. 1474, Springer, 1991, 183-193.
- M. Sadowski, Holomorphic splittings associated with holomorphic complex torus actions, Indag. Math. (N.S.) 5 (1994), 215-219.