ArticleOriginal scientific text

Title

Invariant Hodge forms and equivariant splittings of algebraic manifolds

Authors 1

Affiliations

  1. Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

Let T be a complex torus acting holomorphically on a compact algebraic manifold M and let ev:π(T,1)π(M,x) be the homomorphism induced by ev:TttxM.Weshowtf^oreachT-variantHodformΩonMthereisaholomorϕcfibrationp:MTwhosefibersareΩ-perpendica̲rtheorbits.UsingthisweprovetM^isT-ariantlybiholomorϕcT×MTifandonlyifthereisagroupΔofπ(M)andaHodformΩonMsucht^π₁(M) = im ev_∗ × Δand∫_{β×δ} Ω = 0forallβ ∈ im ev_∗!$! and δ ∈ Δ.

Keywords

holomorphic action, fibration, Hodge form, equivariant splitting, algebraic manifold

Bibliography

  1. E. Calabi, On Kähler manifolds with vanishing canonical class, in: Algebraic Geometry and Topology, Princeton Univ. Press, 1957, 78-89.
  2. J. B. Carrell, Holomorphically injective complex toral actions, in: Proc. Second Conference on Compact Transformation Groups, Part 2, Lecture Notes in Math. 299, Springer, 1972, 205-236.
  3. J. Matsushima, Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Differential Geom. 3 (1969), 477-480.
  4. D. Mumford, Abelian Varieties, Oxford Univ. Press, Oxford, 1970.
  5. M. Sadowski, Equivariant splittings associated with smooth toral actions, in: Algebraic Topology, Proc., Poznań 1989, Lecture Notes in Math. 1474, Springer, 1991, 183-193.
  6. M. Sadowski, Holomorphic splittings associated with holomorphic complex torus actions, Indag. Math. (N.S.) 5 (1994), 215-219.
Pages:
277-283
Main language of publication
English
Received
1995-06-20
Published
1997
Exact and natural sciences