ArticleOriginal scientific text

Title

A Schwarz lemma on complex ellipsoids

Authors 1

Affiliations

  1. Faculty of Engineering, Kyushu Kyoritsu University, Jiyugaoka, Yahatanishi-ku, Kitakyushu 807, Japan

Abstract

We give a Schwarz lemma on complex ellipsoids.

Keywords

Schwarz lemma, complex ellipsoid, extreme point, balanced domain, Minkowski function, geodesics

Bibliography

  1. G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219-229.
  2. H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105-110.
  3. M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993.
  4. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
  5. L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364.
  6. H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint.
  7. J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304.
  8. J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249.
Pages:
269-275
Main language of publication
English
Received
1996-04-29
Accepted
1996-11-20
Published
1997
Exact and natural sciences