ArticleOriginal scientific text
Title
A Schwarz lemma on complex ellipsoids
Authors 1
Affiliations
- Faculty of Engineering, Kyushu Kyoritsu University, Jiyugaoka, Yahatanishi-ku, Kitakyushu 807, Japan
Abstract
We give a Schwarz lemma on complex ellipsoids.
Keywords
Schwarz lemma, complex ellipsoid, extreme point, balanced domain, Minkowski function, geodesics
Bibliography
- G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219-229.
- H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105-110.
- M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993.
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
- L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364.
- H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint.
- J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304.
- J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249.