We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.
Institute of Mathematics, Polish Academy of Sciences, Staromiejska 8/6, 40-013 Katowice, Poland
Bibliografia
[1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
[2] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977.
[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[4] R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
[5] A. Lasota, From fractals to stochastic differential equations, to appear.
[6] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
[7] K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469.
[8] K. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[9] T. Szarek, Iterated function systems depending on previous transformations, to appear.