ArticleOriginal scientific text
Title
Markov operators acting on Polish spaces
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Staromiejska 8/6, 40-013 Katowice, Poland
Abstract
We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.
Keywords
Markov operators, iterated function systems
Bibliography
- M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
- M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977.
- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
- A. Lasota, From fractals to stochastic differential equations, to appear.
- A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
- K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469.
- K. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
- T. Szarek, Iterated function systems depending on previous transformations, to appear.