ArticleOriginal scientific text

Title

On the local Cauchy problem for nonlinear hyperbolic functional differential equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) Dz(x,y)=f(x,y,z(x,y),(Wz)(x,y),Dyz(x,y)) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).

Keywords

functional differential equations, weak solutions, bicharacteristics, successive approximations

Bibliography

  1. P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Boll. Un. Mat. Ital. A (5) 14 (1977), 325-332.
  2. P. Bassanini, Iterative methods for quasilinear hyperbolic systems, Boll. Un. Mat. Ital. B (6) 1 (1982), 225-250.
  3. P. Bassanini and J. Turo, Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations, Ann. Mat. Pura Appl. 156 (1990), 211-230.
  4. P. Brandi and R. Ceppitelli, On the existence of solutions of a nonlinear functional partial differential equation of the first order, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186.
  5. P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations, Ann. Polon. Math. 47 (1986), 121-136.
  6. P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, to appear.
  7. M. G. Cazzani-Nieri, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, Ann. Mat. Pura Appl. 157 (1994), 351-387.
  8. L. Cesari, A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358.
  9. L. Cesari, A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma 3 (1974), 107-131.
  10. M. Cinquini Cibrario, Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano 52 (1982), 531-550.
  11. M. Cinquini Cibrario, Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Ist. Lombardo 104 (1970), 795-829.
  12. M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Ann. Mat. Pura Appl. 140 (1985), 223-253.
  13. T. Człapiński, On the existence of generalized solutions of nonlinear first order partial differential-functional equations in two independent variables, Czechoslovak Math. J. 41 (1991), 490-506.
  14. T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182.
  15. D. Jaruszewska-Walczak, Existence of solutions of first order partial differential-functional equations, Boll. Un. Mat. Ital. B (7) 4 (1990), 57-82.
  16. Z. Kamont and S. Zacharek, On the existence of weak solutions of nonlinear first order partial differential equations in two independent variables, Boll. Un. Mat. Ital. B (6) 5 (1986), 851-879.
  17. T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
  18. A. D. Myshkis and A. S. Slopak, A mixed problem for systems of differential-functional equations with partial derivatives and with operators of Volterra type, Mat. Sb. 41 (1957), 239-256 (in Russian).
  19. O. A. Oleĭnik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk 12 (3) (1957), 3-73 (in Russian).
  20. A. Salvadori, Sul problema di Cauchy per una struttura ereditaria di tipo iperbolico. Esistenza, unicità e dipendenza continua, Atti Sem. Mat. Fis. Univ. Modena 32 (1983), 329-356.
  21. J. Szarski, Characteristics and Cauchy problems for nonlinear partial differential functional equations of first order, Univ. Kansas, Lawrence, Kan., 1959.
  22. J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197.
  23. T. Ważewski, Sur l'appréciation du domaine d'existence des intégrales de l'équation aux dérivées partielles du premier ordre, Ann. Soc. Polon. Math. 14 (1935), 149-177.
Pages:
215-232
Main language of publication
English
Received
1996-11-20
Accepted
1997-03-10
Published
1997
Exact and natural sciences