ArticleOriginal scientific text
Title
On a method of determining supports of Thoma's characters of discrete groups
Authors 1
Affiliations
- Institute of Mathematics Silesian, Technical University, Kaszubska 23, 44-100 Gliwice, Poland
Abstract
We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.
Keywords
positive definite functions, characters, traces
Bibliography
- R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98.
- A. L. Carey and W. Moran, Characters of nilpotent groups, Math. Proc. Cambridge Philos. Soc. 96 (1984), 123-137.
- M. Hall, The Theory of Groups, New York, Macmillan, 1969.
- R. E. Howe, On representation of finitely generated discrete torsion free nilpotent groups, Pacific J. Math. 73 (1977), 281-305.
- E. Kaniuth und R. Lasser, Zum verallgemeinerten Wienerschen Satz über diskrete nilpotente Gruppen der Klasse 3, Math. Z. 163 (1978), 39-55.
- E. Płonka, Remarks on characters of discrete nilpotent groups, Math. Ann. 240 (1979), 97-102.
- S. Sakai, C*-algebras and W*-algebras, Springer, 1971.
- E. Thoma, Über unitäre Darstellungen abzählbarer Gruppen, Math. Ann. 153 (1964), 111-139.
- H. Umegaki, Condional expectation in operator algebras, Tôhoku Math. J. 6 (1954), 1977-1981.