ArticleOriginal scientific text

Title

A set on which the Łojasiewicz exponent at infinity is attained

Authors 1, 1

Affiliations

  1. Faculty of Mathematics, University of Łódź, S. Banacha 22, 90-238 Łódź, Poland

Abstract

We show that for a polynomial mapping F=(f,...,f):nm the Łojasiewicz exponent _(F) of F is attained on the set {zn:f(z)·...·f(z)=0}.

Keywords

polynomial mapping, Łojasiewicz exponent

Bibliography

  1. [BR] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1090.
  2. [CK] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160.
  3. [J] Z. Jelonek, Testing sets for properness of polynomial mappings, Inst. Math., Jagiellonian University, preprint 16 (1996), 37 pp.
  4. [NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335.
  5. [P₁] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281.
  6. [P₂] A. Płoski, A note on the Łojasiewicz exponent at infinity, Bull. Soc. Sci. Lettres Łódź 44 (17) (1994), 11-15.
Pages:
191-197
Main language of publication
English
Received
1996-11-25
Published
1997
Exact and natural sciences