ArticleOriginal scientific text

Title

Normal structure of Lorentz-Orlicz spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Memphis, Memphis, Tennessee 38152, U.S.A.
  2. Department of Mathematics, Harbin Institute of Technology, Harbin, China

Abstract

Let ϕ: ℝ → ℝ₊ ∪ {0} be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = sup{u: ϕ is linear on (0,u)}, v₀=sup{v: w is constant on (0,v)} (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that Λϕ,w(0,) (respectively, Λϕ,w(0,1)) is an order continuous Lorentz-Orlicz space. (1) Λϕ,w has normal structure if and only if u₀ = 0 (respectively, ^{v}ϕ(u)·w<2andu<).(2)Λ_{ϕ,w}hasweaklyalstructureifandonlyif∫_0^{v₀} ϕ(u₀)· w < 2!$!.

Keywords

Lorentz-Orlicz space, normal sturcture, order continuous, Young function

Bibliography

  1. N. L. Carothers, S. J. Dilworth, C. J. Lennard and D. A. Trautman, A fixed point property for the Lorentz space Lp,1(μ), Indiana Univ. Math. J. 40 (1991), 345-352.
  2. N. L. Carothers, R. Haydon and P.-K. Lin, On the isometries of the Lorentz function spaces, Israel J. Math. 84 (1993), 265-287.
  3. S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).
  4. J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
  5. S. J. Dilworth and Y.-P. Hsu, The uniform Kadec-Klee property for the Lorentz space Lw,1, J. Austral. Math. Soc. Ser. A 60 (1996), 7-17.
  6. D. V. van Dulst and V. D. de Valk, (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces, Canad. J. Math. 38 (1986), 728-750.
  7. A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38.
  8. A. Kamińska, P.-K. Lin and H. Y. Sun, Uniformly normal structure of Orlicz-Lorentz spaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability, N. Kalton, E. Saab and S. Montgomery-Smith (eds.), Lecture Notes in Pure and Appl. Math. 175, Dekker, New York, 1996, 229-238.
  9. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
  10. T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125-143.
  11. T. Landes, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1984), 523-534.
  12. P.-K. Lin and H. Y. Sun, Some geometric properties of Lorentz-Orlicz spaces, Arch. Math. (Basel) 64 (1995), 500-511.
  13. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
  14. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1991.
Pages:
147-168
Main language of publication
English
Received
1996-08-30
Accepted
1997-04-07
Published
1997
Exact and natural sciences