ArticleOriginal scientific text
Title
On symmetry of the pluricomplex Green function for ellipsoids
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.
Keywords
pluricomplex Green function, Lempert function, complex ellipsoid, -geodesic
Bibliography
- [Bed-Dem] E. Bedford and J.-P. Demailly, Two counterexamples concerning the pluri-complex Green function in ℂⁿ, Indiana Univ. Math. J. 37 (1988), 865-867.
- [Edi] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96.
- [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter 1993.
- [Jar-Pfl-Zei] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543.
- [Kli] M. Klimek, Pluripotential Theory, Oxford University Press, 1991.
- [Lem1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables Theory Appl. 29 (1996), 59-71.
- [Pol] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.