ArticleOriginal scientific text

Title

Fundamental solutions of the complex Monge-Ampère equation

Authors 1, 1

Affiliations

  1. Department of Mathematics, Syracuse University, Syracuse, New York 13244, U.S.A.

Abstract

We prove that any positive function on ℂℙ¹ which is constant outside a countable Gδ-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.

Keywords

plurisubharmonic functions, singularities, order function, Monge-Ampère equation

Bibliography

  1. E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 19-22.
  2. E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
  3. U. Cegrell and J. Thorbiörnson, Extremal plurisubharmonic functions, Ann. Polon. Math. 63 (1996), 63-69.
  4. H. I. Celik, Pointwise singularities of plurisubharmonic functions, Ph.D. Thesis, Syracuse University, 1996.
  5. H. I. Celik and E. A. Poletsky, Order functions of plurisubharmonic functions, Studia Math. 124 (1997), 161-171.
  6. J. P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115-193.
  7. M. Klimek, Pluripotential Theory, Oxford University Press, New York, 1991.
  8. E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.
Pages:
103-110
Main language of publication
English
Received
1996-07-26
Accepted
1997-03-17
Published
1997
Exact and natural sciences