ArticleOriginal scientific text
Title
Fundamental solutions of the complex Monge-Ampère equation
Authors 1, 1
Affiliations
- Department of Mathematics, Syracuse University, Syracuse, New York 13244, U.S.A.
Abstract
We prove that any positive function on ℂℙ¹ which is constant outside a countable -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
Keywords
plurisubharmonic functions, singularities, order function, Monge-Ampère equation
Bibliography
- E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 19-22.
- E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- U. Cegrell and J. Thorbiörnson, Extremal plurisubharmonic functions, Ann. Polon. Math. 63 (1996), 63-69.
- H. I. Celik, Pointwise singularities of plurisubharmonic functions, Ph.D. Thesis, Syracuse University, 1996.
- H. I. Celik and E. A. Poletsky, Order functions of plurisubharmonic functions, Studia Math. 124 (1997), 161-171.
- J. P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115-193.
- M. Klimek, Pluripotential Theory, Oxford University Press, New York, 1991.
- E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.