ArticleOriginal scientific text
Title
Successive derivatives and finite expansions involving the H-function of one and more variables
Authors 1, 2
Affiliations
- Department of Mathematics and Statistics, M. L. Sukhadia University, Udaipur 313001, India
- S. M. B. Government College, Nathadwara, Rajasthan, India
Abstract
Certain results including the successive derivatives of the H-function of one and more variables are established. These remove the limitations of Ławrynowicz's (1969) formulas and as a result extend the results of Skibiński [13] and various other authors. As an application some finite expansion formulas are also established, which reduce to hypergeometric functions of one and more variables that are of common interest.
Keywords
H-function of several variables, differential operator, expansion formulas, Appell functions, Lauricella functions, Kampé de Fériet function, generalized hypergeometric functions
Bibliography
- P. Anandani, On the derivative of H-function, Rev. Roumaine Math. Pures Appl. 15 (1970), 189-191.
- J. L. Burchnall and T. W. Chaundy, On Appell's hypergeometric functions, Quart. J. Math. 11 (1940), 249-270.
- S. P. Goyal, The H-function of two variables, Kyungpook Math. J. 15 (1975), 117-131.
- K. C. Gupta and U. C. Jain, On the derivatives of H-function, Proc. Nat. Acad. Sci. India Sect. A 38 (1968), 189-192.
- R. N. Jain, General series involving H-function, Proc. Cambridge Philos. Soc. 65 (1969), 461-465.
- C. M. Joshi and N. L. Joshi, Reinvestigation of conditions of convergence of the H-function of two variables, submitted for publication.
- C. M. Joshi and M. L. Prajapat, On some results concerning generalized H-function of two variables, Indian J. Pure Appl. Math. 8 (1977), 103-116.
- J. Ławrynowicz, Remarks on the preceding paper of P. Anandani, Ann. Polon. Math. 21 (1969), 120-123.
- A. M. Mathai and R. K. Saxena, The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern, New Delhi, 1978.
- M. L. Oliver and S. L. Kalla, On the derivative of Fox's H-function, Acta Mexican Ci. Tecn. 5 (1971), 3-5.
- R. K. Raina, On the repeated differentiation of H-function of two variables, Vijnana Parishad Anusandhan Patrika 21 (1978), 221-228.
- S. L. Rakesh, On the derivatives of the generalised Fox's H-function of two variables, Vijnana Parishad Anusandhan Patrika 18 (1975), 17-25.
- P. Skibiński, Some expansion theorems for the H-function, Ann. Polon. Math. 23 (1970), 125-138.
- L. F. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Horwood, Chichester, 1985.
- H. M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of several complex variables II, Comment. Math. Univ. St. Paul. 25 (1975), 169-197.
- H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publ., New Delhi-Madras, 1982.