ArticleOriginal scientific text

Title

The Jacobian Conjecture in case of "non-negative coefficients"

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4/508, 30-059 Kraków, Poland

Abstract

It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form F(x,...,xn)=x-H(x):=(x-H(x,...,xn),...,xn-Hn(x,...,xn)), where Hj are homogeneous polynomials of degree 3 with real coefficients (or Hj=0), j = 1,...,n and H'(x) is a nilpotent matrix for each x=(x,...,xn)n. We give another proof of Yu's theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case degF-1(degF)dF-1, where dF:=max{dH(x):xn}. Note that the above inequality is not true when the coefficients of H are arbitrary real numbers; cf. [E3].

Keywords

polynomial automorphisms, nilpotent matrix, Jacobian Conjecture

Bibliography

  1. [BCW] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
  2. [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
  3. [D1] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313.
  4. [D2] L. M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), 233-244.
  5. [D3] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1991.
  6. [D4] L. M. Drużkowski, The Jacobian Conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, A. van den Essen (ed.), Kluwer, 1995, 41-53.
  7. [DR] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian Conjecture, Ann. Polon. Math. 46 (1985), 85-90.
  8. [E1] A. van den Essen, Polynomial maps and the Jacobian Conjecture, Report 9034, Catholic University, Nijmegen, 1990.
  9. [E2] A. van den Essen, The exotic world of invertible polynomial maps, Nieuw Arch. Wisk. (4) 11 (1) (1993), 21-31.
  10. [E3] A. van den Essen, A counterexample to a conjecture of Drużkowski and Rusek, Ann. Polon. Math. 62 (1995), 173-176.
  11. [K] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
  12. [KS] T. Krasiński and S. Spodzieja, On linear differential operators related to the n-dimensional Jacobian Conjecture, in: Real Algebraic Geometry, M. Coste, L. Mahé and M.-F. Roy (eds.), Lecture Notes in Math. 1524, Springer, 1992, 308-315.
  13. [M] G. H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), 679-705.
  14. [MO] G. H. Meisters and C. Olech, A poly-flow formulation of the Jacobian Conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), 725-731.
  15. [P] S. Pinchuk, A counterexample to the real Jacobian Conjecture, Math. Z. 217 (1994), 1-4.
  16. [R] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1989.
  17. [RW] K. Rusek and T. Winiarski, Polynomial automorphisms of Cn, Univ. Iagel. Acta Math. 24 (1984), 143-149.
  18. [S] Y. Stein, The Jacobian problem as a system of ordinary differential equations, Israel J. Math. 89 (1995), 301-319.
  19. [W] T. Winiarski, Inverse of polynomial automorphisms of Cn, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 673-674.
  20. [Y] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), 141-150 (in Russian).
  21. [Yu] J.-T. Yu, On the Jacobian Conjecture: reduction of coefficients, J. Algebra 171 (1995), 515-523.
Pages:
67-75
Main language of publication
English
Received
1995-07-30
Published
1997
Exact and natural sciences