ArticleOriginal scientific text

Title

The strongest vector space topology is locally convex on separable linear subspaces

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland

Abstract

Let X be a real or complex vector space equipped with the strongest vector space topology τmax. Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.

Keywords

topological vector spaces, locally pseudoconvex spaces, locally convex subspaces

Bibliography

  1. S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
  2. N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.
  3. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
  4. A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.
  5. A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201.
  6. G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969.
  7. G. Köthe, Topological Vector Spaces II, Springer, Berlin, 1979.
  8. S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
  9. H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
  10. L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
  11. A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.
Pages:
275-282
Main language of publication
English
Received
1995-04-26
Published
1997
Exact and natural sciences