ArticleOriginal scientific text
Title
The strongest vector space topology is locally convex on separable linear subspaces
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland
Abstract
Let X be a real or complex vector space equipped with the strongest vector space topology . Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.
Keywords
topological vector spaces, locally pseudoconvex spaces, locally convex subspaces
Bibliography
- S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
- N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.
- H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
- A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.
- A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201.
- G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969.
- G. Köthe, Topological Vector Spaces II, Springer, Berlin, 1979.
- S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
- L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
- A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.