ArticleOriginal scientific text

Title

On strongly monotone flows

Authors 1

Affiliations

  1. Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Abstract

M. Hirsch's famous theorem on strongly monotone flows generated by autonomous systems u'(t) = f(u(t)) is generalized to the case where f depends also on t, satisfies Carathéodory hypotheses and is only locally Lipschitz continuous in u. The main result is a corresponding Comparison Theorem, where f(t,u) is quasimonotone increasing in u; it describes precisely for which components equality or strict inequality holds.

Keywords

system of ordinary differential equations, initial value problem, comparison theorem, monotone flow, quasimonotonicity

Bibliography

  1. M. Hirsch, Systems of differential equations that are competitive or cooperative, II: convergence almost everywhere, SIAM J. Math. Anal. 16 (1985), 423-439.
  2. P. Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164.
  3. W. Walter, Gewöhnliche Differentialgleichungen, 5th ed., Springer, 1993.
  4. T. Ważewski, Systèmes des équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs applications, Ann. Soc. Polon. Math. 23 (1950), 112-166.
Pages:
269-274
Main language of publication
English
Received
1995-08-21
Published
1997
Exact and natural sciences