ArticleOriginal scientific text
Title
Analytic formulas for the hyperbolic distance between two contractions
Authors 1
Affiliations
- Institute of Mathematics, Romanian Academy, P.O. Box 1-764, RO-70700, Bucharest, Romania
Abstract
In this paper we give some analytic formulas for the hyperbolic (Harnack) distance between two contractions which permit concrete computations in several situations, including the finite-dimensional case. The main consequence of these formulas is the proof of the Schwarz-Pick Lemma. It modifies those given in [13] by the avoidance of a general Schur type formula for contractive analytic functions, more exactly by reducing the case to the more manageable situation when the function takes as values strict contractions.
Keywords
Harnack parts, hyperbolic distance, operator Schwarz-Pick Lemma
Bibliography
- T. Ando, I. Suciu and D. Timotin, Characterization of some Harnack parts of contractions, J. Operator Theory 2 (1979), 233-245.
- S. Dineen, The Schwarz Lemma, Clarendon Press, Oxford, 1989.
- C. Foiaş, On Harnack parts of contractions, Rev. Roumaine Math. Pures Appl. 19 (1974), 314-318.
- C. Foiaş and A. E. Frazho, The Commutant Lifting Aproach to Interpolation Problems, Oper. Theory Adv. Appl. 44, Birkhäuser, Basel, 1990.
- V. A. Khatskevich, Yu. L. Shmul'yan and V. S. Shul'man, Equivalent contractions, Dokl. Akad. Nauk SSSR 278 (1) (1984), 47-49 (in Russian); English transl.: Soviet Math. Dokl. 30 (2) (1984), 338-340.
- V. A. Khatskevich, Yu. L. Shmul'yan and V. S. Shul'man, Pre-orders and equivalences in the operator ball, Sibirsk. Mat. Zh. 32 (3) (1991) (in Russian); English transl.: Siberian Math. J. 32 (3) (1991), 496-506.
- W. Mlak, Hilbert Spaces and Operator Theory, PWN-Kluwer, Warszawa-Dordrecht, 1991.
- G. Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math. Ann. 77 (1916), 7-23.
- H. A. Schwarz, Zur Theorie der Abbildung, in: Gesammelte Mathematische Abhandlungen, Band II, Springer, Berlin, 1890, 108-132.
- S. Stoilow, Theory of Functions of a Complex Variable, I, II, Editura Academiei, Bucureşti, 1954, 1958 (in Romanian).
- I. Suciu, Harnack inequalities for a functional calculus, in: Hilbert Space Operators and Operator Algebras (Proc. Internat. Conf., Tihany, 1970), Colloq. Math. Soc. János Bolyai 5, North-Holland, Amsterdam, 1972, 449-511.
- I. Suciu, Analytic relations between functional models for contractions, Acta Sci. Math. (Szeged) 33 (1973), 359-365.
- I. Suciu, Schwarz Lemma for operator contractive analytic functions, preprint IMAR No. 5, 1992.
- I. Suciu, The Kobayashi distance between two contractions, in: Oper. Theory Adv. Appl. 61, Birkhäuser, Basel, 1993, 189-200.
- I. Suciu and I. Valuşescu, On the hyperbolic metric on Harnack parts, Studia Math. 55 (1976), 97-109.
- N. Suciu, On Harnack ordering of contractions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 467-471.
- B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland-American Elsevier-Akademiai Kiadó, Amsterdam-New York-Budapest, 1970.