ArticleOriginal scientific text

Title

A natural localization of Hardy spaces in several complex variables

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of California, Riverside, California 92521, U.S.A.
  2. Mathematisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
  3. Fachbereich Mathematik, Universität des Saarlandes, 6600 Saarbrücken, Germany

Abstract

Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in n. The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop's property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.

Keywords

weakly pseudoconvex domain, Hardy space, quasi-coherent module, Bishop's property (β), Toeplitz operators

Bibliography

  1. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-394.
  2. A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, Boca Raton, Fla., 1991.
  3. A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 1-95.
  4. R. G. Douglas and V. Paulsen, Hilbert Modules over Function Algebras, Pitman Res. Notes Math. Ser. 219, Harlow, 1989.
  5. R. G. Douglas, V. Paulsen, C. H. Sah, and K. Yan, Algebraic reduction and rigidity for Hilbert modules, Amer. J. Math. 117 (1995), 75-92.
  6. N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
  7. J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monographs, Oxford Univ. Press, Oxford, 1996.
  8. C. Foiaş, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. (Basel) 14 (1963), 341-349.
  9. G. M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130 (transl. from Uspekhi Mat. Nauk 32 (3) (1977), 57-118).
  10. J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), 525-545.
  11. S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth, Belmont, Calif., 1992.
  12. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, Fla., 1992.
  13. M. Putinar, Quasi-similarity of tuples with Bishop's property (β), Integral Equations Operator Theory 15 (1992), 1047-1052.
  14. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, New York, 1986.
  15. M.-C. Shaw, Local solvability and estimates for ̅b on CR manifolds, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., Providence, R.I., 1991, 335-345.
  16. F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
  17. F. H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Reidel, Dordrecht, 1982.
  18. R. Wolff, Spectra of analytic Toeplitz tuples on Hardy spaces, Bull. London Math. Soc., to appear
Pages:
183-201
Main language of publication
English
Received
1995-05-15
Published
1997
Exact and natural sciences