ArticleOriginal scientific text

Title

Convergence of orthogonal series of projections in Banach spaces

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Łódź University, S. Banacha 22, 90-238 Łódź, Poland

Abstract

For a sequence (Aj) of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums Sn=n_{j=1}Aj in a "strong" sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of Sn (i.e. SnfAf μ-a.e. for all f ∈ (A)).

Keywords

idempotent, mutually orthogonal projections, L₂-space, convergence almost everywhere

Bibliography

  1. E. Berkson and T. A. Gillespie, Stečkin's theorem, transference and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170.
  2. J. L. Ciach, R. Jajte and A. Paszkiewicz, On the almost sure approximation and convergence of linear operators in L₂-spaces, Probab. Math. Statist. 15 (1995), 215-225.
  3. H. R. Downson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, New York, 1978.
  4. N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience, New York, 1958.
  5. N. Dunford and J. T. Schwartz, Linear Operators Part III : Spectral Operators, Interscience, New York, 1971.
  6. A. M. Garsia, Topics in Almost Everywhere Convergence, Lectures in Adv. Math. 4, Markham, Chicago, 1970.
  7. R. Jajte and A. Paszkiewicz, Almost sure approximation of unbounded operators in L₂(X,,μ), to appear.
  8. R. Jajte and A. Paszkiewicz, Topics in almost sure approximation of unbounded operators in L₂-spaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability, Columbia, 1994, Lecture Notes in Pure and Appl. Math. 175, Dekker, New York, 1996, 219-228.
  9. S. Kaczmarz, Sur la convergence et la sommabilité des développements orthogonaux, Studia Math. 1 (1929), 87-121.
  10. J. Marcinkiewicz, Sur la convergence des séries orthogonales, Studia Math. 6 (1933), 39-45.
  11. I. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc. 1 (1960), 334-343.
  12. I. R. Ringrose, On well-bounded operators, II, Proc. London Math. Soc. 13 (1963), 613-630.
Pages:
137-153
Main language of publication
English
Received
1995-07-12
Published
1997
Exact and natural sciences