Download PDF - Sur une algèbre Q-symétrique
ArticleOriginal scientific text
Title
Sur une algèbre Q-symétrique
Authors 1
Affiliations
- Centre de Mathématiques, École Polytechnique, 91128 Palaiseau, France
Abstract
We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.
Keywords
deformations, derivations, symplectic leaves, representations
Bibliography
- J. Alev et M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), 1787-1802.
- A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527.
- E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, The 3-dimensional Euclidean quantum group
and its R-matrix, J. Math. Phys. 32 (1991), 1159-1165. - V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994.
- A. Guichardet, Groupes quantiques, InterEditions, 1995.
- C. Kassel, Quantum Groups, Springer, 1995.
- R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.
- Ya. S. Soĭbel'man, The algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1) (1990), 190-212 (in Russian); English transl.: Leningrad Math. J. 2 (1) (1991), 161-178.
- L. L. Vaksman and Y. S. Soĭbel'man, An algebra of functions on the quantum group SU(2), Funktsional. Anal. i Prilozhen. 22 (3) (1988), 1-14 (in Russian); English transl.: Funct. Anal. Appl. 22 (3) (1988), 170-181.
- M. Van den Bergh, Noncommutative homology of some 3-dimensional quantum spaces, K-Theory 8 (1994), 213-230.
- M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1089-1156.
- S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251-263.