ArticleOriginal scientific text

Title

Sur une algèbre Q-symétrique

Authors 1

Affiliations

  1. Centre de Mathématiques, École Polytechnique, 91128 Palaiseau, France

Abstract

We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.

Keywords

deformations, derivations, symplectic leaves, representations

Bibliography

  1. J. Alev et M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), 1787-1802.
  2. A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527.
  3. E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, The 3-dimensional Euclidean quantum group E(3)q and its R-matrix, J. Math. Phys. 32 (1991), 1159-1165.
  4. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994.
  5. A. Guichardet, Groupes quantiques, InterEditions, 1995.
  6. C. Kassel, Quantum Groups, Springer, 1995.
  7. R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.
  8. Ya. S. Soĭbel'man, The algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1) (1990), 190-212 (in Russian); English transl.: Leningrad Math. J. 2 (1) (1991), 161-178.
  9. L. L. Vaksman and Y. S. Soĭbel'man, An algebra of functions on the quantum group SU(2), Funktsional. Anal. i Prilozhen. 22 (3) (1988), 1-14 (in Russian); English transl.: Funct. Anal. Appl. 22 (3) (1988), 170-181.
  10. M. Van den Bergh, Noncommutative homology of some 3-dimensional quantum spaces, K-Theory 8 (1994), 213-230.
  11. M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1089-1156.
  12. S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251-263.
Pages:
123-135
Main language of publication
French
Received
1995-09-01
Published
1997
Exact and natural sciences