Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 66 | 1 | 105-121

Tytuł artykułu

On the intertwinings of regular dilations

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this paper is to find conditions that assure the existence of the commutant lifting theorem for commuting pairs of contractions (briefly, bicontractions) having (*-)regular dilations. It is known that in such generality, a commutant lifting theorem fails to be true. A positive answer is given for contractive intertwinings which doubly intertwine one of the components. We also show that it is possible to drop the doubly intertwining property for one of the components in some special cases, for instance for semi-subnormal bicontractions. As an application, a result regarding the existence of a unitary (isometric) dilation for three commuting contractions is obtained.

Rocznik

Tom

66

Numer

1

Strony

105-121

Opis fizyczny

Daty

wydano
1997
otrzymano
1995-07-12
poprawiono
1996-01-08

Twórcy

  • Department of Mathematics, University of Timişoara, Bv. V. Pârvan 4, 1900 Timişoara, Romania
  • Department of Mathematics, University of Timişoara, Bv. V. Pârvan 4, 1900 Timişoara, Romania

Bibliografia

  • [1] T. Ando, On a pair of commutative contractions, Acta Sci. Math. 24 (1963), 88-90.
  • [2] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (2) (1990), 339-350.
  • [3] S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci. Math. (Szeged) 22 (1961), 106-111.
  • [4] R. E. Curto and F. H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791-810.
  • [5] C. Foiaş and A. E. Frazho, The Commutant Lifting Approach to Interpolation Problems, Birkhäuser, Basel, 1990.
  • [6] T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (2) (1981), 240-242.
  • [7] D. Gaşpar and N. Suciu, Intertwining properties of isometric semigroups and Wold-type decompositions, in: Oper. Theory Adv. Appl. 24, Birkhäuser, Basel, 1987, 183-193.
  • [8] D. Gaşpar and N. Suciu, On the Geometric Structure of Regular Dilations, Oper. Theory Adv. Appl., Birkhäuser, 1996.
  • [9] D. Gaşpar and N. Suciu, On intertwining liftings of the distinguished dilations of bicontractions, to appear.
  • [10] I. Halperin, Sz.-Nagy-Brehmer dilations, Acta Sci. Math. (Szeged) 23 (1962), 279-289.
  • [11] M. Kosiek, A. Octavio and M. Ptak, On the reflexivity of pairs of contractions, Proc. Amer. Math. Soc. 123 (1995), 1229-1236.
  • [12] W. Mlak, Intertwining operators, Studia Math. 43 (1972), 219-233.
  • [13] W. Mlak, Commutants of subnormal operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 19 (9) (1971), 837-842.
  • [14] V. Müller, Commutant lifting theorem for n-tuples of contractions, Acta Sci. Math. (Szeged) 59 (1994), 465-474.
  • [15] S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481-490.
  • [16] M. Słociński, Isometric dilations of doubly commuting contractions and related models, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (12) (1977), 1233-1242.
  • [17] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262.
  • [18] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam-Budapest, 1970.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-apmv66z1p105bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.