ArticleOriginal scientific text
Title
Convergence of holomorphic chains
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We endow the module of analytic p-chains with the structure of a second-countable metrizable topological space.
Keywords
holomorphic chains, currents, convergence of chains
Bibliography
- [Ch] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publishers, 1989.
- [Dr] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204.
- [En] R. Engelking, General Topology, Heldermann, 1989.
- [Gu] R. C. Gunning, Introduction to Holomorphic Functions of Several Complex Variables. Local Theory, Wadsworth & Brooks/Cole, 1990.
- [Ha] R. Harvey, Holomorphic chains and their boundaries, in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 309-382.
- [Ło] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- [R] S. Rams, Bezout-type theorem for certain analytic sets, in preparation.
- [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191.
- [TW] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393.
- [Wi] T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178.