ArticleOriginal scientific text

Title

Convergence of holomorphic chains

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We endow the module of analytic p-chains with the structure of a second-countable metrizable topological space.

Keywords

holomorphic chains, currents, convergence of chains

Bibliography

  1. [Ch] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publishers, 1989.
  2. [Dr] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204.
  3. [En] R. Engelking, General Topology, Heldermann, 1989.
  4. [Gu] R. C. Gunning, Introduction to Holomorphic Functions of Several Complex Variables. Local Theory, Wadsworth & Brooks/Cole, 1990.
  5. [Ha] R. Harvey, Holomorphic chains and their boundaries, in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 309-382.
  6. [Ło] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
  7. [R] S. Rams, Bezout-type theorem for certain analytic sets, in preparation.
  8. [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191.
  9. [TW] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393.
  10. [Wi] T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178.
Pages:
227-234
Main language of publication
English
Received
1996-04-03
Accepted
1996-07-26
Published
1997
Exact and natural sciences