ArticleOriginal scientific text

Title

Certain partial differential subordinations on some Reinhardt domains in n

Authors 1, 1

Affiliations

  1. Faculty of Mathematics, Babeş-Bolyai University,1 M. Kogălniceanu Str., 3400 Cluj-Napoca, Romania

Abstract

We obtain an extension of Jack-Miller-Mocanu's Lemma for holomorphic mappings defined in some Reinhardt domains in n. Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain B2p with p ≥ 1.

Keywords

subordination, biholomorphic mapping, Reinhardt domain

Bibliography

  1. [C] B. Chabat, Introduction à l'analyse complexe, tome II, Mir, Moscou, 1990.
  2. [GW] S. Gong and S. K. Wang, A necessary and sufficient condition that biholomorphic mappings are starlike on a class of Reinhardt domains, Chinese Ann. Math. Ser. B 13 (1) (1992), 95-104.
  3. [GWQ] S. Gong, S. K. Wang and Q. Yu, Biholomorphic convex mappings of ball in n, Pacific J. Math. 161 (1993), 287-306.
  4. [K] K. Kikuchi, Starlike and convex mappings in several complex variables, Pacific J. Math. 44 (1973), 569-580.
  5. [KO1] G. Kohr, On some partial differential subordinations for holomorphic mappings in n, Libertas Math. 115 (1996), 129-142.
  6. [KO2] G. Kohr and M. Kohr-Ile, Partial differential subordinations for holomorphic mappings of several complex variables, Studia Univ. Babeş-Bolyai Math. 60 (4) (1995), 46-62.
  7. [KO3] G. Kohr and P. Liczberski, General partial differential subordinations for holomorphic mappings in n, Math. Nachr., to appear.
  8. [KO4] G. Kohr and C. Pintea, An extension of Jack-Miller-Mocanu's Lemma for holomorphic mappings defined on some domains in n, to appear.
  9. [L] P. Liczberski, Jack's Lemma for holomorphic mappings in n, Ann. Univ. Mariae Curie-Skłodowska Sect. A 40 (1986), 131-140.
  10. [MM1] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
  11. [MM2] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), 199-211.
  12. [S1] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math. 33 (1970), 241-248.
  13. [S2] T. J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, in: Lecture Notes in Math. 599, Springer, 1976, 146-159.
Pages:
179-191
Main language of publication
English
Received
1996-04-02
Published
1997
Exact and natural sciences