ArticleOriginal scientific text

Title

PM functions, their characteristic intervals and iterative roots

Authors 1

Affiliations

  1. Centre for Math. Sciences, CICA, Academia Sinica, Chengdu 610041, P.R. China

Abstract

The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.

Keywords

iterative root, piecewise monotone function, characteristic interval

Bibliography

  1. N. H. Abel, Oeuvres Complètes, t. II, Christiania, 1881, 36-39.
  2. U. T. Bödewadt, Zur Iteration reeller Funktionen, Math. Z. 49 (1944), 497-516.
  3. J. M. Dubbey, The Mathematical Work of Charles Babbage, Cambridge Univ. Press, 1978.
  4. M. K. Fort Jr., The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc. 6 (1955), 960-967.
  5. H. Kneser, Reelle analytische Lösungen der Gleichung φ(φ(x))=ex und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1950), 56-67.
  6. G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Ecole Norm. Sup. (3) 1 (1884), Suppl., 3-41.
  7. M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN, Warszawa, 1968.
  8. M. Kuczma, Fractional iteration of differentiable functions, Ann. Polon. Math. 22 (1969/70), 217-227.
  9. M. Kuczma and A. Smajdor, Fractional iteration in the class of convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 717-720.
  10. R. E. Rice, B. Schweizer and A. Sklar, When is f(f(z)) = az²+bz+c?, Amer. Math. Monthly 87 (1980), 252-263.
  11. J. Zhang and L. Yang, Discussion on iterative roots of piecewise monotone functions, Acta Math. Sinica 26 (1983), 398-412 (in Chinese).
Pages:
119-128
Main language of publication
English
Received
1994-11-14
Accepted
1995-09-11
Published
1997
Exact and natural sciences