ArticleOriginal scientific text
Title
Polynomial set-valued functions
Authors 1
Affiliations
- Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
Abstract
The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.
Keywords
polynomial set-valued functions, difference operators, biadditive functions, Jensen function
Bibliography
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
- R. Ger, On extensions of polynomial functions, Results Math. 26 (1994), 281-289.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śl., Warszawa-Kraków-Katowice, 1985.
- K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politech. Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
- H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- H. Rådström, One-parameter semigroups of subsets of a real linear space, Ark. Mat. 4 (1960), 87-97.
- A. Smajdor, On a functional equation, Ann. Math. Sil. 8 (1994), 217-226.