ArticleOriginal scientific text

Title

On a differential inequality for a viscous compressible heat conducting capillary fluid bounded by a free surface

Authors 1, 2

Affiliations

  1. Department of Mathematics, Military University of Technology, S. Kaliskiego 2, 01-489 Warszawa, Poland
  2. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat concluding capillary fluid. The inequality is essential in proving the global existence of solutions.

Keywords

free boundary, compressible viscous heat conducting fluid, surface tension

Bibliography

  1. O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian).
  2. L. Landau and E. Lifschitz, Mechanics of Continuum Media, Nauka, Moscow, 1984; new edition: Hydrodynamics, Nauka, Moscow, 1986 (in Russian).
  3. A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104.
  4. A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A 55 (1979), 337-342.
  5. A. Matsumura and T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid, preprint Univ. of Wisconsin, MRC Technical Summary Report 2237 (1981).
  6. A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, R. Glowinski and J. L. Lions (eds.), North-Holland, Amsterdam, 1982, 389-406.
  7. A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464.
  8. K. Pileckas and W. M. Zajączkowski, On free boundary problem for stationary compressible Navier-Stokes equations, Comm. Math. Phys. 128 (1990), 1-36.
  9. V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid, preprint of Paderborn University.
  10. A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 607-647.
  11. A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), 259-296.
  12. E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170.
  13. E. Zadrzyńska and W. M. Zajączkowski, On global motion of a compressible heat conducting fluid bounded by a free surface, Acta Appl. Math. 37 (1994), 221-231.
  14. E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 195-205.
  15. E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. Tech. Sci. 43 (1995), 423-444.
  16. E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for a viscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math. 61 (1995), 141-188.
  17. E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221.
  18. W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface, Dissertationes Math. 324 (1993).
  19. W. M. Zajączkowski, On Nonstationary Motion of A Compressible Barotropic Viscous Capillary Fluid Bounded By A Free Surface, Siam J. Math. Anal. 25 (1994), 1-84.
Pages:
23-53
Main language of publication
English
Received
1994-12-19
Published
1996
Exact and natural sciences