ArticleOriginal scientific text
Title
Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We find a bounded solution of the non-homogeneous Monge-Ampère equation under very weak assumptions on its right hand side.
Keywords
plurisubharmonic function, complex Monge-Ampère operator
Bibliography
- [A] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
- [AT] H. Alexander, and B. A. Taylor, Comparison of two capacities in
, Math. Z. 186 (1984), 407-417. - [B] E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables: Proceedings of the Mittag-Leffler Inst. 1987-1988, J. E. Fornaess (ed.), Math. Notes 38, Princeton University Press, 1993, 48-97.
- [BT1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44.
- [BT2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [BL] Z. Błocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. Math. 41 (1993), 151-157.
- [C] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251.
- [CP] U. Cegrell, and L. Persson, The Dirichlet problem for the complex Monge-Ampère operator: stability in L², Michigan Math. J. 39 (1992), 145-151.
- [CS] U. Cegrell and A. Sadullaev, Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge-Ampère operator, Math. Scand. 71 (1993), 62-68.
- [D] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19 (1985).
- [K] M. Klimek, Pluripotential Theory, Oxford University Press, 1991.
- [KO] S. Kołodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J. 43 (1994), 1321-1338.
- [M] D. R. Monn, Regularity of the complex Monge-Ampère equation for radially symmetric functions of the unit ball, Math. Ann. 275 (1986), 501-511.
- [P] L. Persson, On the Dirichlet problem for the complex Monge-Ampère operator, Doctoral Thesis No 1, 1992, University of Umeå.
- [S] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in
, Sophia University, Tokyo, 1982. - [TS] M. Tsuji, Potential Theory in Modern Function Theory, Tokyo, 1959.