ArticleOriginal scientific text

Title

Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We find a bounded solution of the non-homogeneous Monge-Ampère equation under very weak assumptions on its right hand side.

Keywords

plurisubharmonic function, complex Monge-Ampère operator

Bibliography

  1. [A] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
  2. [AT] H. Alexander, and B. A. Taylor, Comparison of two capacities in n, Math. Z. 186 (1984), 407-417.
  3. [B] E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables: Proceedings of the Mittag-Leffler Inst. 1987-1988, J. E. Fornaess (ed.), Math. Notes 38, Princeton University Press, 1993, 48-97.
  4. [BT1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44.
  5. [BT2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
  6. [BL] Z. Błocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. Math. 41 (1993), 151-157.
  7. [C] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251.
  8. [CP] U. Cegrell, and L. Persson, The Dirichlet problem for the complex Monge-Ampère operator: stability in L², Michigan Math. J. 39 (1992), 145-151.
  9. [CS] U. Cegrell and A. Sadullaev, Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge-Ampère operator, Math. Scand. 71 (1993), 62-68.
  10. [D] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19 (1985).
  11. [K] M. Klimek, Pluripotential Theory, Oxford University Press, 1991.
  12. [KO] S. Kołodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J. 43 (1994), 1321-1338.
  13. [M] D. R. Monn, Regularity of the complex Monge-Ampère equation for radially symmetric functions of the unit ball, Math. Ann. 275 (1986), 501-511.
  14. [P] L. Persson, On the Dirichlet problem for the complex Monge-Ampère operator, Doctoral Thesis No 1, 1992, University of Umeå.
  15. [S] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in n, Sophia University, Tokyo, 1982.
  16. [TS] M. Tsuji, Potential Theory in Modern Function Theory, Tokyo, 1959.
Pages:
11-21
Main language of publication
English
Received
1994-09-10
Accepted
1995-01-20
Published
1996
Exact and natural sciences