ArticleOriginal scientific text

Title

Slicing of generalized surfaces with curvature measures and diameter's estimate

Authors 1

Affiliations

  1. Dipartimento di Matemetica, Università di Trento, 38050 Povo (Trento), Italy

Abstract

We prove generalizations of Meusnier's theorem and Fenchel's inequality for a class of generalized surfaces with curvature measures. Moreover, we apply them to obtain a diameter estimate.

Keywords

generalized Gauss graphs, rectifiable currents, generalized curvatures, Meusnier theorem, Fenchel inequality, diameter estimate

Bibliography

  1. G. Anzellotti, R. Serapioni and I. Tamanini, Curvatures, functionals, currents, Indiana Univ. Math. J. 39 (1990), 617-669.
  2. M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
  3. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
  4. M. W. Hirsch, Differential Topology, Springer, Berlin, 1976.
  5. F. Morgan, Geometric Measure Theory. A Beginner's Guide, Academic Press, 1988.
  6. R. Osserman, Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731-756.
  7. L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3, Canberra, 1983.
  8. L. Simon, Existence of Willmore Surfaces, Proc. Centre Math. Anal. Austral. Nat. Univ. 10, Canberra, 1985.
Pages:
267-283
Main language of publication
English
Received
1995-08-31
Accepted
1995-12-20
Published
1996
Exact and natural sciences