ArticleOriginal scientific text

Title

The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation

Authors 1

Affiliations

  1. Institute of Mathematics, Pedagogical University of Rzeszów, Rejtana 16a, 35-310 Rzeszów, Poland

Abstract

Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation f(x+f(x)ny)=f(x)f(y), then it is continuous or the set {x ∈ X : f(x) ≠ 0} is a Christensen zero set.

Keywords

Gołąb-Schinzel functional equation, Christensen measurability, F-space

Bibliography

  1. J. Aczél and S. Gołąb, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
  2. K. Baron, On the continuous solutions of the Gołąb-Schinzel equation, Aequationes Math. 38 (1989), 155-162.
  3. W. Benz, The cardinality of the set of discontinuous solutions of a class of functional equations, Aequationes Math. 32 (1987), 58-62.
  4. N. Brillouët et J. Dhombres, Equations fonctionnelles et recherche de sous groupes, Aequationes Math. 31 (1986), 253-293.
  5. J. Brzdęk, Subgroups of the group Zn and a generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71.
  6. J. Brzdęk, A generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 39 (1990), 268-269.
  7. J. Brzdęk, On the solutions of the functional equation f(xf(y)l+yf(x)k)=tf(x)f(y), Publ. Math. Debrecen 38 (1991), 175-183.
  8. J. P. R. Christensen, Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, 1974.
  9. J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260.
  10. P. Fischer and Z. Słodkowski, Christensen zero sets and measurable convex functions, Proc. Amer. Math. Soc. 79 (1980), 449-453.
  11. S. Gołąb et A. Schinzel, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Publ. Math. Debrecen 6 (1959), 113-125.
  12. D. Ilse, I. Lechmann und W. Schulz, Gruppoide und Funktionalgleichungen, Deutscher Verlag Wiss., Berlin, 1984.
  13. P. Javor, On the general solution of the functional equation f(x+yf(x)) = f(x)f(y), Aequationes Math. 1 (1968), 235-238.
  14. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śląski, Warszawa-Kraków-Katowice, 1985.
  15. P. Plaumann und S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264.
  16. C. G. Popa, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Ann. Polon. Math. 17 (1965), 193-198.
  17. W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.
  18. M. Sablik and P. Urban, On the solutions of the equation f(xf(y)k+yf(x)l)=f(x)f(y), Demonstratio Math. 18 (1985), 863-867.
  19. S. Wołodźko, Solution générale de l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Aequationes Math. 2 (1968), 12-29.
Pages:
195-205
Main language of publication
English
Received
1990-12-17
Accepted
1995-10-23
Published
1996
Exact and natural sciences