ArticleOriginal scientific text

Title

Fueter regular mappings and harmonicity

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Łódź Branch, Narutowicza 56, 90-136 Łódź, Poland

Abstract

It is shown that Fueter regular functions appear in connection with the Eells condition for harmonicity. New conditions for mappings from 4-dimensional conformally flat manifolds to be harmonic are obtained.

Keywords

quaternions, Fueter regular functions, harmonic mappings

Bibliography

  1. M. M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330.
  2. A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin, 1987.
  3. E. Bonan, Sur les G-structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389-461.
  4. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, New York, 1982.
  5. J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conf. Ser. in Math. 50, Amer. Math. Soc., 1983.
  6. R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307-330.
  7. R. Fueter, Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 8 (1936), 371-378.
  8. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I-II, Interscience, 1963.
  9. W. Królikowski, On Fueter-Hurwitz regular mappings, Dissertationes Math. 353 (1996).
  10. W. Królikowski and R. M. Porter, Quaternionic regular and biregular functions in the sense of Fueter, in: Proc. Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä, Ber. Univ. Jyväskylä, Math. Inst. 55 (1993), 65-87.
  11. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton Univ. Press and Univ. of Tokyo Press, Princeton, N.J., 1974.
  12. A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191-214.
  13. V. Souček, Holomorphicity in quaternionic analysis, in: Seminari di Geometria 1982-1983, Università di Bologna, Istituto de Geometria, Dipartimento de Matematica, 1984, 147-153.
  14. A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos Soc. 85 (1979), 199-225.
Pages:
97-114
Main language of publication
English
Received
1994-07-18
Accepted
1996-02-15
Published
1996
Exact and natural sciences