ArticleOriginal scientific text

Title

Convergence results for unbounded solutions of first order non-linear differential-functional equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, 57 Wita Stwosza St., 80-952 Gdańsk, Poland

Abstract

We consider the Cauchy problem in an unbounded region for equations of the type either Dtz(t,x)=f(t,x,z(t,x),z(t,x),Dxz(t,x)) or Dtz(t,x)=f(t,x,z(t,x),z,Dxz(t,x)). We prove convergence of their difference analogues by means of recurrence inequalities in some wide classes of unbounded functions.

Keywords

error estimates, recurrence inequalities, difference scheme

Bibliography

  1. P. Besala, On solutions of first order partial differential equations defined in an unbounded zone, Bull. Acad. Polon. Sci. 12 (1964), 95-99.
  2. P. Besala, Finite difference approximation to the Cauchy problem for non-linear parabolic differential equations, Ann. Polon. Math. 46 (1985), 19-26.
  3. Z. Kamont, On the Cauchy problem for system of first order partial differential equations, Serdica 5 (1979), 327-339.
  4. M. Krzyżański, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
  5. H. Leszczyński, General finite difference approximation to the Cauchy problem for non-linear parabolic differential-functional equations, Ann. Polon. Math. 53 (1991), 15-28.
  6. H. Leszczyński, Uniqueness results for unbounded solutions of first order non-linear differential-functional equations, Acta Math. Hungar. 64 (1994), 75-92.
  7. M. Malec et A. Schiaffino, Méthode aux différences finies pour une équation non-linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. (7) 1-B (1987), 99-109.
  8. K. Prządka, Difference methods for non-linear partial differential functional equations of the first order, Math. Nachr. 138 (1988), 105-123.
  9. J. Szarski, Differential Inequalities, PWN, Warszawa, 1967.
Pages:
1-16
Main language of publication
English
Received
1992-08-28
Accepted
1996-02-09
Published
1996
Exact and natural sciences