ArticleOriginal scientific text

Title

Generalized symmetric spaces and minimal models

Authors 1, 1, 2

Affiliations

  1. Institute of Mathematics, Szczecin Technical University, Al. Piastów 17, 70-310 Szczecin, Poland
  2. Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland

Abstract

We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.

Keywords

minimal model, Koszul complex, generalized symmetric space

Bibliography

  1. C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993.
  2. P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
  3. L. Flatto, Invariants of reflection groups, Enseign. Math. 28 (1978), 237-293.
  4. A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
  5. V. Greub, S. Halperin and R. Vanstone, Curvature, Connections and Cohomology, Vol. 3, Acad. Press, 1976.
  6. S. Halperin, Lectures on Minimal Models, Hermann, 1982.
  7. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, 1978.
  8. J. A. Jiménez, Riemannian 4-symmetric spaces, Trans. Amer. Math. Soc. 306 (1988), 715-734.
  9. O. Kowalski, Classification of generalized Riemannian symmetric spaces of dimension ≤ 5, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 85 (1975).
  10. O. Kowalski, Generalized Symmetric Spaces, Springer, 1980.
  11. E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985.
  12. D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).
  13. G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207.
  14. T. Miller and J. Neisendorfer, Formal and coformal spaces, Illinois J. Math. 22 (1978), 565-580.
  15. D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1977), 269-331.
  16. M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1962), 313-328.
  17. D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer, 1988.
  18. J.-C. Thomas, Homotopie rationnelle des fibrés de Serre, Ph.D. Thesis, Université des Sciences et Techniques de Lille 1, 1980.
  19. J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90.
  20. M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644.
  21. R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, 1973.
Pages:
17-35
Main language of publication
English
Received
1994-04-11
Accepted
1995-04-30
Published
1996
Exact and natural sciences