Download PDF - Plurisubharmonic saddles
ArticleOriginal scientific text
Title
Plurisubharmonic saddles
Authors 1
Affiliations
- Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
Abstract
A certain linear growth of the pluricomplex Green function of a bounded convex domain of at a given boundary point is related to the existence of a certain plurisubharmonic function called a "plurisubharmonic saddle". In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.
Keywords
extremal plurisubharmonic functions, uniqueness theorem, convex sets
Bibliography
- C. O. Kiselman, The partial Legendre transform for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148.
- M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of
, Math. USSR-Izv. 36 (1991), 497-517. - L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), 85-103.
- S. Momm, The boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75.
- S. Momm, Extremal plurisubharmonic functions associated to convex pluricomplex Green functions with pole at infinity, J. Reine Angew. Math., to appear.
- R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
- M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
- V. P. Zakharyuta, Extremal plurisubharmonic functions, Hilbert scales and isomorphisms of spaces of analytic functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., part I, 19 (1974), 133-157, part II, 21 (1974), 65-83 (in Russian).