ArticleOriginal scientific text

Title

Logarithmic structure of the generalized bifurcation set

Authors 1

Affiliations

  1. Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Abstract

Let G:n×r be a holomorphic family of functions. If Λn×r, πr:n×rr is an analytic variety then   QΛ(G)={(x,u)n×r:G(·,u) has a critical point in Λπr-1(u)}isanaturalralizationofthebifurcationvarietyofG.WevestigatethelocalstructureofQ_{Λ}(G)forlocallytrivialdeformationsofΛ₀ = π_{r}^{-1}(0)!$!. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.

Keywords

bifurcations, singularities, logarithmic stratifications

Bibliography

  1. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
  2. J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567.
  3. J. W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90.
  4. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984.
  5. S. Izumiya, Generic bifurcations of varieties, Manuscripta Math. 46 (1984), 137-164.
  6. S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. of Math. 158 (1993), 317-334.
  7. S. Janeczko, On quasicaustics and their logarithmic vector fields, Bull. Austral. Math. Soc. 43 (1991), 365-376.
  8. A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23-29.
  9. S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
  10. O. W. Lyashko, Classification of critical points of functions on a manifold with singular boundary, Funktsional. Anal. i Prilozhen. 17 (3) (1983), 28-36 (in Russian).
  11. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
  12. H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann. 263 (1983), 313-321.
  13. C. T. Wall, A splitting theorem for maps into ℝ², Math. Ann. 259 (1982), 443-453.
  14. V. M. Zakalyukin, Bifurcations of wavefronts depending on one parameter, Functional Anal. Appl. 10 (1976), 139-140.
Pages:
187-197
Main language of publication
English
Received
1995-05-29
Published
1996
Exact and natural sciences